1
|
Cela I, Caponio VCA, Capone E, Pinti M, Mascitti M, Togni L, Lo Muzio L, Rubini C, De Laurenzi V, Lattanzio R, Perrotti V, Sala G. LGALS3BP is a potential target of antibody-drug conjugates in oral squamous cell carcinoma. Oral Dis 2024; 30:2039-2050. [PMID: 37649401 DOI: 10.1111/odi.14719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE The aim of the present study was to evaluate the expression of intracellular and vesicular LGALS3BP in oral squamous cell carcinoma (OSCC) patients and available cell lines to explore its potential as a target for antibody-drug conjugate (ADC) therapy. METHODS Free and vesicular LGALS3BP expression levels were evaluated in cancer tissues from a cohort of OSCC patients as well as in a panel of OSCC cell lines through immunohistochemistry, qRT-PCR, Western Blot analysis, and ELISA. RESULTS LGALS3BP resulted in being highly expressed in the cytoplasm of tumour cells in OSCC patient tissues. A strong correlation was found between high LGALS3BP expression levels and aggressive histological features of OSCC. Biochemistry analysis performed on OSCC cell lines showed that LGALS3BP is expressed in all the tested cell lines and highly enriched in cancer-derived extracellular vesicles. Moreover, LGALS3BP high-expressing HOC621 and CAL27 OSCC cell lines showed high sensitivity to the ADC-payload DM4, with an IC50 around 0.3 nM. CONCLUSIONS The present study highlights that LGALS3BP is highly expressed in OSCC suggesting a role as a potential diagnostic biomarker and therapeutic target for ADC-based therapy.
Collapse
Affiliation(s)
- Ilaria Cela
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Emily Capone
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Morena Pinti
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marco Mascitti
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Lucrezia Togni
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Corrado Rubini
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Vittoria Perrotti
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
2
|
Szebeni B, Veres-Székely A, Pap D, Bokrossy P, Varga Z, Gaál A, Mihály J, Pállinger É, Takács IM, Pajtók C, Bernáth M, Reusz GS, Szabó AJ, Vannay Á. Extracellular Vesicles of Patients on Peritoneal Dialysis Inhibit the TGF-β- and PDGF-B-Mediated Fibrotic Processes. Cells 2024; 13:605. [PMID: 38607044 PMCID: PMC11011990 DOI: 10.3390/cells13070605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Among patients on peritoneal dialysis (PD), 50-80% will develop peritoneal fibrosis, and 0.5-4.4% will develop life-threatening encapsulating peritoneal sclerosis (EPS). Here, we investigated the role of extracellular vesicles (EVs) on the TGF-β- and PDGF-B-driven processes of peritoneal fibrosis. EVs were isolated from the peritoneal dialysis effluent (PDE) of children receiving continuous ambulatory PD. The impact of PDE-EVs on the epithelial-mesenchymal transition (EMT) and collagen production of the peritoneal mesothelial cells and fibroblasts were investigated in vitro and in vivo in the chlorhexidine digluconate (CG)-induced mice model of peritoneal fibrosis. PDE-EVs showed spherical morphology in the 100 nm size range, and their spectral features, CD63, and annexin positivity were characteristic of EVs. PDE-EVs penetrated into the peritoneal mesothelial cells and fibroblasts and reduced their PDE- or PDGF-B-induced proliferation. Furthermore, PDE-EVs inhibited the PDE- or TGF-β-induced EMT and collagen production of the investigated cell types. PDE-EVs contributed to the mesothelial layer integrity and decreased the submesothelial thickening of CG-treated mice. We demonstrated that PDE-EVs significantly inhibit the PDGF-B- or TGF-β-induced fibrotic processes in vitro and in vivo, suggesting that EVs may contribute to new therapeutic strategies to treat peritoneal fibrosis and other fibroproliferative diseases.
Collapse
Affiliation(s)
- Beáta Szebeni
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Apor Veres-Székely
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Domonkos Pap
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Péter Bokrossy
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Zoltán Varga
- TTK Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Anikó Gaál
- TTK Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Judith Mihály
- TTK Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary
| | - István M. Takács
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Csenge Pajtók
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Mária Bernáth
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - György S. Reusz
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Attila J. Szabó
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Ádám Vannay
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|