1
|
Nunes RS, Freitas Mariano KC, Pieretti JC, Dos Reis RA, Seabra AB. Innovative nitric oxide-releasing nanomaterials: Current progress, trends, challenges, and perspectives in cardiovascular therapies. Nitric Oxide 2025; 156:67-81. [PMID: 40139304 DOI: 10.1016/j.niox.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/23/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, imposing a substantial impact on healthcare systems due to high morbidity, mortality, and associated economic costs. Nitric oxide (NO), a key signaling molecule in the cardiovascular system, plays a critical role in regulating vascular homeostasis, angiogenesis, and inflammation. Despite its therapeutic potential, direct NO delivery in the cardiovascular system is limited by its reactivity, short half-life, and poor bioavailability. The development of NO-releasing nanomaterials addresses these challenges by enabling controlled, targeted, and sustained NO delivery, mitigating systemic toxicity and improving therapeutic outcomes. This review provides a comprehensive overview of recent advancements in the design, functionalization, and application of NO-releasing nanomaterials for cardiovascular therapies. Key topics include the use of in vitro and in vivo models to evaluate efficacy in conditions such as myocardial ischemia-reperfusion injury, thrombosis, and atherosclerosis, as well as the role of stimuli-responsive systems and hybrid nanomaterials in enhancing delivery precision. Advances in nanotechnology, such as stimuli-responsive systems and hybrid functionalized nanomaterials for targeted delivery, have enhanced the precision and effectiveness of NO therapeutic effects for treating a wide spectrum of cardiovascular conditions. However, challenges like scalable production, biocompatibility, and integration with existing therapies remain. Future research should focus on interdisciplinary approaches to optimize these materials for clinical translation, ensuring accessibility and addressing the global problem of cardiovascular diseases.
Collapse
Affiliation(s)
- Renan S Nunes
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil.
| | - Kelli C Freitas Mariano
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil
| | - Joana C Pieretti
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil
| | - Roberta A Dos Reis
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
2
|
Wang Z, Zhang C. Nanomaterials for targeted therapy of kidney diseases: Strategies and advances. Mater Today Bio 2025; 31:101534. [PMID: 39990736 PMCID: PMC11846943 DOI: 10.1016/j.mtbio.2025.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
The treatment and management of kidney diseases pose a significant global burden. Due to the presence of blood circulation barriers and glomerular filtration barriers, drug therapy for kidney diseases faces challenges such as poor renal targeting, short half-life, and severe systemic side effects, severely hindering therapeutic progress. Therefore, the research and development of kidney-targeted therapeutic agents is of great clinical significance. In recent years, the application of nanotechnology in the field of nephrology has shown potential for revolutionizing the diagnosis and treatment of kidney diseases. Carefully designed nanomaterials can exhibit optimal biological characteristics, influencing various aspects such as circulation, retention, targeting, and excretion. Rationally designing and modifying nanomaterials based on the anatomical structure and pathophysiological environment of the kidney to achieve highly specific kidney-targeted nanomaterials or nanodrug delivery systems is both feasible and promising. Based on the targeted therapy of kidney diseases, this review discusses the advantages and limitations of current nanomedicine in the targeted therapy of kidney diseases, and summarizes the application and challenges of current renal active/passive targeting strategies, in order to further promote the development of kidney-targeted nanomedicine through a preliminary summary of previous studies and future prospects.
Collapse
Affiliation(s)
- Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Shen L, Zhou Y, Gong J, Fan H, Liu L. The role of macrophages in hypertrophic scarring: molecular to therapeutic insights. Front Immunol 2025; 16:1503985. [PMID: 40226618 PMCID: PMC11986478 DOI: 10.3389/fimmu.2025.1503985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Hypertrophic Scar (HS) is a common fibrotic disease of the skin, usually caused by injury to the deep dermis due to trauma, burns, or surgical injury. The main feature of HS is the thickening and hardening of the skin, often accompanied by itching and pain, which seriously affects the patient's quality of life. Macrophages are involved in all stages of HS genesis through phenotypic changes. M1-type macrophages primarily function in the early inflammatory phase by secreting pro-inflammatory factors, while M2-type macrophages actively contribute to tissue repair and fibrosis. Despite advances in understanding HS pathogenesis, the precise mechanisms linking macrophage phenotypic changes to fibrosis remain incompletely elucidated. This review addresses these gaps by discussing the pathological mechanisms of HS formation, the phenotypic changes of macrophages at different stages of HS formation, and the pathways through which macrophages influence HS progression. Furthermore, emerging technologies for HS treatment and novel therapeutic strategies targeting macrophages are highlighted, offering potential avenues for improved prevention and treatment of HS.
Collapse
Affiliation(s)
| | | | | | - Hongqiao Fan
- Department of Galactophore, The First Hospital of Hunan University of Chinese
Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese
Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Yang R, Yang L, Zhang N, Wan Y, Chen S, Xiao Y, Liang X, Yang S, Zhong Y, Huang D, Chen W, Zhao B. Targeted delivery of polymeric NO-donor micelles to hepatic stellate cells for restoration of liver function and inhibition of hepatic fibrosis. J Control Release 2025; 379:466-477. [PMID: 39824287 DOI: 10.1016/j.jconrel.2025.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Liver fibrosis is a prevalent liver disease associated with significant morbidity, and the activation of hepatic stellate cells (HSCs) serves as the primary causative factor driving the progression of liver fibrosis. However, capillarization of liver sinusoidal endothelial cells (LSECs) induced by hepatic fibrosis can reduce nitric oxide (NO) production and bioavailability, which consequently loses the ability to retain HSCs dormant, leading to amplified HSCs activation. Herein, an elaborate micelle (VN-M@BN) loaded with benazepril (BN) was constructed by self-assembly of polymeric NO donor, aiming for the controlled release of NO in liver fibrosis lesions thereby impeding the progression of liver fibrosis. VN-M@BN with the vitamin A (VA) ligand modification was designed to target HSCs for efficient liver fibrosis inhibition. Controlled NO release significantly downregulated α-smooth muscle actin (α-SMA) and induced apoptosis of activated HSCs, thus enhancing the inhibition effects of BN towards HSCs. Furthermore, the in suit antifibrotic treatment results confirmed that VN-M@BN possessed good circulatory stability and targetability to liver fibrotic tissues, thereby effectively ameliorating the collagen deposition and fibrosis process in damaged liver tissues. The NO-based targeted nanodrug system enabled precise delivery of therapeutic drugs to activated HSCs, thereby synergizing the efficacy in treating liver fibrosis with minimal adverse effects.
Collapse
Affiliation(s)
- Rui Yang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Lifen Yang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ni Zhang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yuqing Wan
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shineng Chen
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yiqing Xiao
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoping Liang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shangjie Yang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
5
|
Roointan A, Xu R, Corrie S, Hagemeyer CE, Alt K. Nanotherapeutics in Kidney Disease: Innovations, Challenges, and Future Directions. J Am Soc Nephrol 2025; 36:500-518. [PMID: 39705082 PMCID: PMC11888965 DOI: 10.1681/asn.0000000608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 12/22/2024] Open
Abstract
The treatment and management of kidney diseases present a significant global challenge, affecting over 800 million individuals and necessitating innovative therapeutic strategies that transcend symptomatic relief. The application of nanotechnology to therapies for kidney diseases, while still in its early stages, holds transformative potential for improving treatment outcomes. Recent advancements in nanoparticle-based drug delivery leverage the unique physicochemical properties of nanoparticles for targeted and controlled therapeutic delivery to the kidneys. Current research is focused on understanding the functional and phenotypic changes in kidney cells during both acute and chronic conditions, allowing for the identification of optimal target cells. In addition, the development of tailored nanomedicines enhances their retention and binding to key renal membranes and cell populations, ultimately improving localization, tolerability, and efficacy. However, significant barriers remain, including inconsistent nanoparticle synthesis and the complexity of kidney-specific targeting. To overcome these challenges, the field requires advanced synthesis techniques, refined targeting strategies, and the establishment of animal models that accurately reflect human kidney diseases. These efforts are critical for the clinical application of nanotherapeutics, which promise novel solutions for kidney disease management. This review evaluates a substantial body of in vivo research, highlighting the prospects, challenges, and opportunities presented by nanotechnology-mediated therapies and their potential to transform kidney disease treatment.
Collapse
Affiliation(s)
- Amir Roointan
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- NanoTheranostics Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rong Xu
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Christoph E. Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Karen Alt
- NanoTheranostics Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
He C, Yin M, Zhou H, Qin J, Wu S, Liu H, Yu X, Chen J, Zhang H, Zhang L, Wang Y. Magnetic Nanoactuator-Protein Fiber Coated Hydrogel Dressing for Well-Balanced Skin Wound Healing and Tissue Regeneration. ACS NANO 2025; 19:1713-1731. [PMID: 39749690 DOI: 10.1021/acsnano.4c15647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Despite significant progress in skin wound healing, it is still a challenge to construct multifunctional bioactive dressings based on a highly aligned protein fiber coated hydrogel matrix for antifibrosis skin wound regeneration that is indistinguishable to native skin. In this study, a "dual-wheel-driven" strategy is adopted to modify the surface of methacrylated gelatin (GelMA) hydrogel with highly aligned magnetic nanocomposites-protein fiber assemblies (MPF) consisting of photothermal responsive antibacteria superparamagnetic nanocomposites-fibrinogen (Fg) complexes as the building blocks. Whole-phase healing properties of the modified hydrogel dressing, GelMA-MPF (GMPF), stem from the integration of Fg protein with RGD peptide activity decorated on the surface of the antibacterial magnetic nanoactuator, facilitating facile and reproducible dressing preparation by self-assembly and involving biochemical, morphological, and biophysical cues. Payload and substantial release of copper ions for in situ catalytic production of nitric oxide (NO) from the fiber inorganic skeleton adsorbed by Fg molecules collectively regulate the proliferation, migration, reorganization, and transdifferentiation behavior of fibroblasts and fulfill antifibrosis in the process of skin wound healing and subcutaneous appendage regeneration. In full-thickness skin lesion mouse models, the complete regeneration of skin tissue with regenerated hair follicle cells and capillary blood vessels is realized in a temporally and spatially ordered manner.
Collapse
Affiliation(s)
- Chenlong He
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Ming Yin
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Han Zhou
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Jingwen Qin
- The Institute for Translational Nanomedicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, P. R. China
| | - Shengming Wu
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Huawei Liu
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Xiaoyu Yu
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, P. R. China
| | - Jing Chen
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Hongyi Zhang
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, P. R. China
| | - Lin Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, P. R. China
| | - Yilong Wang
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
7
|
Jin C, Xue L, Zhang L, Yu L, Wu P, Qian H. Engineered Nanoparticles for Theranostic Applications in Kidney Repair. Adv Healthc Mater 2025; 14:e2402480. [PMID: 39617999 DOI: 10.1002/adhm.202402480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/05/2024] [Indexed: 01/03/2025]
Abstract
Kidney diseases are characterized by their intricate nature and complexity, posing significant challenges in their treatment and diagnosis. Nanoparticles (NPs), which can be further classified as synthetic and biomimetic NPs, have emerged as promising candidates for treating various diseases. In recent years, the development of engineered nanotherapeutics has focused on targeting damaged tissues and serving as drug delivery vehicles. Additionally, these NPs have shown superior sensitivity and specificity in diagnosis and imaging, thus providing valuable insights for the early detection of diseases. This review aims to focus on the application of engineered synthetic and biomimetic NPs in kidney diseases in the aspects of treatment, diagnosis, and imaging. Notably, the current perspectives and challenges are evaluated, which provide inspiration for future research directions, and encourage the clinical application of NPs in this field.
Collapse
Affiliation(s)
- Can Jin
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lingling Xue
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Leilei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lixia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
8
|
Li J, Duan J, Hua C, Pan S, Li G, Feng Q, Liu D, Liu Z. Nanomedicine embraces the treatment and prevention of acute kidney injury to chronic kidney disease transition: evidence, challenges, and opportunities. BURNS & TRAUMA 2024; 12:tkae044. [PMID: 39678075 PMCID: PMC11645459 DOI: 10.1093/burnst/tkae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 12/17/2024]
Abstract
Acute kidney injury (AKI), a common kidney disease in which renal function decreases rapidly due to various etiologic factors, is an important risk factor for chronic kidney disease (CKD). The pathogenesis of AKI leading to CKD is complex, and effective treatments are still lacking, which seriously affects the prognosis and quality of life of patients with kidney disease. Nanomedicine, a discipline at the intersection of medicine and nanotechnology, has emerged as a promising avenue for treating kidney diseases ranging from AKI to CKD. Increasing evidence has validated the therapeutic potential of nanomedicine in AKI; however, little attention has been paid to its effect on AKI for patients with CKD. In this review, we systematically emphasize the major pathophysiology of the AKI-to-CKD transition and summarize the treatment effects of nanomedicine on this transition. Furthermore, we discuss the key role of nanomedicine in the regulation of targeted drug delivery, inflammation, oxidative stress, ferroptosis, and apoptosis during the transition from AKI to CKD. Additionally, this review demonstrates that the integration of nanomedicine into nephrology offers unprecedented precision and efficacy in the management of conditions ranging from AKI to CKD, including the design and preparation of multifunctional nanocarriers to overcome biological barriers and deliver therapeutics specifically to renal cells. In summary, nanomedicine holds significant potential for revolutionizing the management of AKI-to-CKD transition, thereby providing a promising opportunity for the future treatment of kidney diseases.
Collapse
Affiliation(s)
- Jia Li
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Jiayu Duan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Chaoyang Hua
- Department of Urology, Henan Children’s Hospital, Children’s Hospital Affiliated to Zhengzhou University, No. 33 Longhu outer Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Guangpu Li
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| |
Collapse
|
9
|
Li A, Wu S, Li Q, Wang Q, Chen Y. Elucidating the Molecular Pathways and Therapeutic Interventions of Gaseous Mediators in the Context of Fibrosis. Antioxidants (Basel) 2024; 13:515. [PMID: 38790620 PMCID: PMC11117599 DOI: 10.3390/antiox13050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Fibrosis, a pathological alteration of the repair response, involves continuous organ damage, scar formation, and eventual functional failure in various chronic inflammatory disorders. Unfortunately, clinical practice offers limited treatment strategies, leading to high mortality rates in chronic diseases. As part of investigations into gaseous mediators, or gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), numerous studies have confirmed their beneficial roles in attenuating fibrosis. Their therapeutic mechanisms, which involve inhibiting oxidative stress, inflammation, apoptosis, and proliferation, have been increasingly elucidated. Additionally, novel gasotransmitters like hydrogen (H2) and sulfur dioxide (SO2) have emerged as promising options for fibrosis treatment. In this review, we primarily demonstrate and summarize the protective and therapeutic effects of gaseous mediators in the process of fibrosis, with a focus on elucidating the underlying molecular mechanisms involved in combating fibrosis.
Collapse
Affiliation(s)
- Aohan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Siyuan Wu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qian Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| |
Collapse
|
10
|
Chiu H, Chau Fang A, Chen YH, Koi RX, Yu KC, Hsieh LH, Shyu YM, Amer TA, Hsueh YJ, Tsao YT, Shen YJ, Wang YM, Chen HC, Lu YJ, Huang CC, Lu TT. Mechanistic and Kinetic Insights into Cellular Uptake of Biomimetic Dinitrosyl Iron Complexes and Intracellular Delivery of NO for Activation of Cytoprotective HO-1. JACS AU 2024; 4:1550-1569. [PMID: 38665642 PMCID: PMC11040670 DOI: 10.1021/jacsau.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Dinitrosyl iron unit (DNIU), [Fe(NO)2], is a natural metallocofactor for biological storage, delivery, and metabolism of nitric oxide (NO). In the attempt to gain a biomimetic insight into the natural DNIU under biological system, in this study, synthetic dinitrosyl iron complexes (DNICs) [(NO)2Fe(μ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) and [(NO)2Fe(μ-SCH2CH2COOCH3)2Fe(NO)2] (DNIC-COOMe) were employed to investigate the structure-reactivity relationship of mechanism and kinetics for cellular uptake of DNICs, intracellular delivery of NO, and activation of cytoprotective heme oxygenase (HO)-1. After rapid cellular uptake of dinuclear DNIC-COOMe through a thiol-mediated pathway (tmax = 0.5 h), intracellular assembly of mononuclear DNIC [(NO)2Fe(SR)(SCys)]n-/[(NO)2Fe(SR)(SCys-protein)]n- occurred, followed by O2-induced release of free NO (tmax = 1-2 h) or direct transfer of NO to soluble guanylate cyclase, which triggered the downstream HO-1. In contrast, steady kinetics for cellular uptake of DNIC-COOH via endocytosis (tmax = 2-8 h) and for intracellular release of NO (tmax = 4-6 h) reflected on the elevated activation of cytoprotective HO-1 (∼50-150-fold change at t = 3-10 h) and on the improved survival of DNIC-COOH-primed mesenchymal stem cell (MSC)/human corneal endothelial cell (HCEC) under stressed conditions. Consequently, this study unravels the bridging thiolate ligands in dinuclear DNIC-COOH/DNIC-COOMe as a switch to control the mechanism, kinetics, and efficacy for cellular uptake of DNICs, intracellular delivery of NO, and activation of cytoprotective HO-1, which poses an implication on enhanced survival of postengrafted MSC for advancing the MSC-based regenerative medicine.
Collapse
Affiliation(s)
- Han Chiu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Anyelina Chau Fang
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Yi-Hong Chen
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Ru Xin Koi
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Kai-Ching Yu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Li-Hung Hsieh
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Yueh-Ming Shyu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Tarik Abdelkareem
Mostafa Amer
- Department
of Biological Science and Technology, Institute of Molecular Medicine
and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Jen Hsueh
- Department
of Ophthalmology and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yu-Ting Tsao
- Department
of Ophthalmology and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yang-Jin Shen
- College
of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department
of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yun-Ming Wang
- Department
of Biological Science and Technology, Institute of Molecular Medicine
and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Hung-Chi Chen
- Department
of Ophthalmology and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College
of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Yu-Jen Lu
- College
of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department
of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chieh-Cheng Huang
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Tsai-Te Lu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013 Taiwan
- Department
of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
11
|
Wang K, Chen H, Zheng J, Chen J, Chen Y, Yuan Y. Engineered liposomes targeting hepatic stellate cells overcome pathological barriers and reverse liver fibrosis. J Control Release 2024; 368:219-232. [PMID: 38367862 DOI: 10.1016/j.jconrel.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Dual pathological barriers, including capillarized liver sinusoidal endothelial cells (LSECs) and deposited extracellular matrix (ECM), result in insufficient drug delivery, significantly compromising the anti-fibrosis efficacy. Additionally, excessive reactive oxygen species (ROS) in the hepatic microenvironment are crucial factors contributing to the progression of liver fibrosis. Hence, hyaluronic acid (HA) modified liposomes co-delivering all-trans retinoic acid (RA) and L-arginine (L-arg) were constructed to reverse hepatic fibrosis. By exhibiting exceptional responsiveness to the fibrotic microenvironment, our cleverly constructed liposomes efficiently disrupted the hepatic sinus pathological barrier, leading to enhanced accumulation of liposomes in activated hepatic stellate cells (HSCs) and subsequent induction of HSCs quiescence. Specially, excessive ROS in liver fibrosis promotes the conversion of loaded L-arg to nitric oxide (NO). The ensuing NO serves to reestablish the fenestrae structure of capillarized LSECs, thereby augmenting the likelihood of liposomes reaching the hepatic sinus space. Furthermore, subsequent oxidation of NO by ROS into peroxynitrite activates pro-matrix metalloproteinases into matrix metalloproteinases, which further disrupts the deposited ECM barrier. Consequently, this NO-induced cascade process greatly amplifies the accumulation of liposomes within activated HSCs. More importantly, the released RA could induce quiescence of activated HSCs by significantly downregulating the expression of myosin light chain-2, thereby effectively mitigating excessive collagen synthesis and ultimately leading to the reversal of liver fibrosis. Overall, this integrated systemic strategy has taken a significant step forward in advancing the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Kaili Wang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Hao Chen
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jiani Zheng
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jiali Chen
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Yixuan Chen
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Yue Yuan
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
12
|
Fang H, Xu S, Wang Y, Yang H, Su D. Endogenous stimuli-responsive drug delivery nanoplatforms for kidney disease therapy. Colloids Surf B Biointerfaces 2023; 232:113598. [PMID: 37866237 DOI: 10.1016/j.colsurfb.2023.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Kidney disease is one of the most life-threatening health problems, affecting millions of people in the world. Commonly used steroids and immunosuppressants often fall exceptionally short of outcomes with inescapable systemic toxicity. With the booming research in nanobiotechnology, stimuli-responsive nanoplatform has come an appealing therapeutic strategy for kidney disease. Endogenous stimuli-responsive materials have shown profuse promise owing to their enhanced spatiotemporal control and precise to the location of the lesion. This review focuses on recent advances stimuli-responsive drug delivery nano-architectonics for kidney disease. First, a brief introduction of pathogenesis of kidney disease and pathological microenvironment were provided. Then, various endogenous stimulus involved in drug delivery nanoplatforms including pH, ROS, enzymes, and glucose were categorized based on the pathological mechanisms of kidney disease. Next, we separately summarized literature examples of endogenous stimuli-responsive nanomaterials, and outlined the design strategies and response mechanisms. Finally, the paper was concluded by discussing remaining challenges and future perspectives of endogenous stimuli-responsive drug delivery nanoplatform for expediting the speed of development and clinical applications.
Collapse
Affiliation(s)
- Hufeng Fang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Yu Wang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| |
Collapse
|
13
|
Ding N, Luo G, Li H, Xing C, Gao Y, Xi W, Wu W, Wang D, Zheng L, Kang Y, Chi X. A Cyclodextrin-Based pH-Responsive MicroRNA Delivery Platform Targeting Polarization of M1 to M2 Macrophages for Sepsis Therapy. Adv Healthc Mater 2023; 12:e2301243. [PMID: 37463303 DOI: 10.1002/adhm.202301243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
The mortality rate of sepsis remains high despite improvements in the diagnosis and treatment of sepsis using symptomatic and supportive therapies, such as anti-infection therapy and fluid resuscitation. Nucleic acid-based drugs have therapeutic potential, although their poor stability and low delivery efficiency have hindered their widespread use. Herein, it is confirmed that miR-223 can polarize proinflammation M1 macrophages to anti-inflammation M2 macrophages. A pH-sensitive nano-drug delivery system comprising β-cyclodextrin-poly(2-(diisopropylamino)ethyl methacrylate)/distearoyl phosphoethanolamine-polyethylene glycol (β-CD-PDPA/DSPE-PEG) is synthesized and developed to target M1 macrophages and miR-223 is encapsulated into nanoparticles (NPs) for sepsis treatment. NPs/miR-223 demonstrated in vitro pH responsiveness with favorable biosafety, stability, and high delivery efficiency. In vivo studies demonstrate that NPs/miR-223 are preferentially accumulated and retained in the inflammation site, thereby reducing inflammation and improving the survival rate of mice with sepsis while exhibiting ideal biosafety. Mechanically, NPs/miR-223 regulates macrophage polarization by targeting Pknox1 and inhibiting the activation of the NF-κB signaling pathway, thereby achieving an anti-inflammatory effect. Collectively, it is demonstrated that the miRNA delivery vector described here provides a new approach for sepsis treatment and accelerates the advancement of nucleic acid drug therapy.
Collapse
Affiliation(s)
- Ni Ding
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Gangjian Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Huiting Li
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Chengyuan Xing
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuanji Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Wenjie Xi
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Weijie Wu
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dan Wang
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Lei Zheng
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinjin Chi
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
14
|
Liao CJ, Tseng YT, Cheng YA, Dayao LA, Iffland-Mühlhaus L, Gee LB, Ribson RD, Chan TS, Apfel UP, Lu TT. Ligand Control of Dinitrosyl Iron Complexes for Selective Superoxide-Mediated Nitric Oxide Monooxygenation and Superoxide-Dioxygen Interconversion. J Am Chem Soc 2023; 145:20389-20402. [PMID: 37683125 DOI: 10.1021/jacs.3c05577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Through nitrosylation of [Fe-S] proteins, or the chelatable iron pool, a dinitrosyl iron unit (DNIU) [Fe(NO)2] embedded in the form of low-molecular-weight/protein-bound dinitrosyl iron complexes (DNICs) was discovered as a metallocofactor assembled under inflammatory conditions with elevated levels of nitric oxide (NO) and superoxide (O2-). In an attempt to gain biomimetic insights into the unexplored transformations of the DNIU under inflammation, we investigated the reactivity toward O2- by a series of DNICs [(NO)2Fe(μ-MePyr)2Fe(NO)2] (1) and [(NO)2Fe(μ-SEt)2Fe(NO)2] (3). During the superoxide-induced conversion of DNIC 1 into DNIC [(K-18-crown-6-ether)2(NO2)][Fe(μ-MePyr)4(μ-O)2(Fe(NO)2)4] (2-K-crown) and a [Fe3+(MePyr)x(NO2)y(O)z]n adduct, stoichiometric NO monooxygenation yielding NO2- occurs without the transient formation of peroxynitrite-derived •OH/•NO2 species. To study the isoelectronic reaction of O2(g) and one-electron-reduced DNIC 1, a DNIC featuring an electronically localized {Fe(NO)2}9-{Fe(NO)2}10 electronic structure, [K-18-crown-6-ether][(NO)2Fe(μ-MePyr)2Fe(NO)2] (1-red), was successfully synthesized and characterized. Oxygenation of DNIC 1-red leads to the similar assembly of DNIC 2-K-crown, of which the electronic structure is best described as paramagnetic with weak antiferromagnetic coupling among the four S = 1/2 {FeIII(NO-)2}9 units and S = 5/2 Fe3+ center. In contrast to DNICs 1 and 1-red, DNICs 3 and [K-18-crown-6-ether][(NO)2Fe(μ-SEt)2Fe(NO)2] (3-red) display a reversible equilibrium of "3 + O2- ⇋ 3-red + O2(g)", which is ascribed to the covalent [Fe(μ-SEt)2Fe] core and redox-active [Fe(NO)2] unit. Based on this study, the supporting/bridging ligands in dinuclear DNIC 1/3 (or 1-red/3-red) control the selective monooxygenation of NO and redox interconversion between O2- and O2 during reaction with O2- (or O2).
Collapse
Affiliation(s)
- Cheng-Jhe Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ting Tseng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-An Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Loise Ann Dayao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Linda Iffland-Mühlhaus
- Department of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Leland B Gee
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ryan D Ribson
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ulf-Peter Apfel
- Department of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Department of Electrosynthesis, Fraunhofer UMSICHT, 46047 Oberhausen, Germany
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The pathophysiological understanding of kidney-related disorders has profoundly increased; however, tissue-specific and cell-specific treatments in this field remain scarce. Advances in nanomedicine enable alteration of pharmacokinetics and targeted treatments improving efficiency and reducing toxicity. This review addresses recent developments of nanocarriers used for various purposes in the broad field of kidney disease, which may pave a path to new therapeutic and diagnostic solutions employing nanomedicine. RECENT FINDINGS Controlled delivery of antiproliferative medications enables improved treatment of polycystic kidney disease and fibrosis. Directed anti-inflammatory treatment mitigated glomerulonephritis and tubulointerstitial nephritis. Multiple injury pathways in AKI have been targeted, with therapeutic solutions for oxidative stress, mitochondrial dysfunction, local inflammation and improving self-repair mechanisms. In addition to such treatment development, noninvasive early detection methods (minutes after ischemic insult) have been demonstrated as well. Sustained release of therapies that reduce ischemia-reperfusion injury as well as new aspects for immunosuppression bring hope to improving kidney transplant outcomes. The latest breakthroughs in gene therapy are made achievable by engineering the targeted delivery of nucleic acids for new treatments of kidney disease. SUMMARY Recent advances in nanotechnology and pathophysiological understanding of kidney diseases show potential for translatable therapeutic and diagnostic interventions in multiple etiologies of kidney disease.
Collapse
Affiliation(s)
- Bishop Boaz
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Swagat Sharma
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Simpson Quarry Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|