1
|
Zeng M, Hu C, Chen T, Zhao T, Dai X. Advancements in Cell Membrane-Derived Biomimetic Nanotherapeutics for Breast Cancer. Int J Nanomedicine 2025; 20:6059-6083. [PMID: 40385497 PMCID: PMC12083498 DOI: 10.2147/ijn.s502144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/11/2025] [Indexed: 05/20/2025] Open
Abstract
Breast cancer remains the leading cause of female mortality worldwide, necessitating innovative and multifaceted approaches to address its various subtypes. Nanotechnology has attracted considerable attention due to its nanoscale dimensions, diverse carrier types, suitability for hydrophobic drug delivery, and capacity for controlled and targeted administration. Nano-sized particles have become prevalent carriers for therapeutic agents targeting breast cancer, thanks to their reproducible synthesis and adjustable properties, including size, shape, and surface characteristics. In addition, certain nanoparticles can enhance therapeutic effects synergistically. However, the immune system often detects and removes these nanoparticles, limiting their efficacy. As a promising alternative, cell membrane-based delivery systems have gained attention due to their biocompatibility and targeting specificity. These membrane-coated drug delivery systems are derived from various cell sources, including blood cells, cancer cells, and stem cells. Leveraging the unique properties of these cell membranes enables precise targeting of breast cancer tumors and associated biomarkers. Inspired by natural structures, cell membranes disguise nanoparticles in the bloodstream, enhancing their retention time in vivo and improving tumor targeting. Consequently, cell membrane-derived nanoparticles (CMDNPs) have been investigated for their potential applications in breast cancer diagnostics, photothermal therapy (PTT), and vaccine development. This review comprehensively explores the potential and limitations of cell membrane-derived drug delivery systems in clinical applications against breast cancer.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Chenji Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Tao Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, People’s Republic of China
| | - Tingrui Zhao
- Department of Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, People’s Republic of China
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
2
|
Wang Y, Huang R, Feng S, Mo R. Advances in nanocarriers for targeted drug delivery and controlled drug release. Chin J Nat Med 2025; 23:513-528. [PMID: 40383609 DOI: 10.1016/s1875-5364(25)60861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 12/24/2024] [Indexed: 05/20/2025]
Abstract
Nanocarrier-based drug delivery systems (nDDSs) present significant opportunities for improving disease treatment, offering advantages in drug encapsulation, solubilization, stability enhancement, and optimized pharmacokinetics and biodistribution. nDDSs, comprising lipid, polymeric, protein, and inorganic nanovehicles, can be guided by or respond to biological cues for precise disease treatment and management. Equipping nanocarriers with tissue/cell-targeted ligands enables effective navigation in complex environments, while functionalization with stimuli-responsive moieties facilitates site-specific controlled release. These strategies enhance drug delivery efficiency, augment therapeutic efficacy, and reduce side effects. This article reviews recent strategies and ongoing advancements in nDDSs for targeted drug delivery and controlled release, examining lesion-targeted nanomedicines through surface modification with small molecules, peptides, antibodies, carbohydrates, or cell membranes, and controlled-release nanocarriers responding to endogenous signals such as pH, redox conditions, enzymes, or external triggers like light, temperature, and magnetism. The article also discusses perspectives on future developments.
Collapse
Affiliation(s)
- Yuqian Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Renqi Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Shufan Feng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Liao L, Liu Y, Li X, Jiang Z, Jiang Z, Yao J. Dual-Regulated Biomimetic Nanocomposites For Promoted Tumor Photodynamic Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20919-20931. [PMID: 40159083 DOI: 10.1021/acsami.5c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Effective tumor immunotherapy is hindered by an immunosuppressive tumor microenvironment (TME), especially in triple-negative breast cancer. Though phototherapy could induce immunogenic cell death (ICD) to increase antitumor immunity, the simultaneous upregulation of indoleamine 2,3-dioxygenase (IDO) induces the negative immunomodulatory effect termed as the "immune-metabolism" loop to compromise immunotherapeutic efficacy. Herein, we developed IMMGP consisting of biomimetic IND-Mn@PM (IDP) and ICG-MnO2@PM (IMP), which combines the phototherapy-induced ICD and metabolic reprogramming to solve the dilemma. During the light-on phase, IMP effectively kills cancer cells with potent photodynamic ROS generation with the assistance of MnO2-produced oxygen and induces ICD to reverse the immunosuppressive TME. In the light-off phase, Mn2+ (from IDP and MnO2-based redox reaction) elicits a Fenton-like reaction to relay ROS generation, which is further orchestrated with continuous exhaustion of intratumoral GSH by the conversion of Mn3+ to Mn2+, and promotes dendritic cell maturation. Moreover, the released indoximod (IND) downregulated IDO to inhibit kynurenine metabolism, which reinvigorates T cell-mediated antitumor immunity. Collectively, IMMGP amplifies the immune response by breaking the "immune-metabolism" loop and sustaining the "immunologically hot" state after phototherapy, thus leading to nearly complete tumor inhibition (94.25%). Thus, IMMGP-mediated dual-phase photodynamic immunotherapy offers a novel approach in cancer nanomedicine.
Collapse
Affiliation(s)
- Li Liao
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Yufei Liu
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
- Interventional Department, the First Affiliated Hospital of Soochow University, 899 Pinghai Avenue, Suzhou 215006, China
| | - Xianhai Li
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Zewei Jiang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Zhijie Jiang
- Department of Clinical Pharmacy, the First Affiliated HospitalZhejiang University School of Medicine, 79 Qingchun Avenue, Hangzhou 310000, China
| | - Jing Yao
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| |
Collapse
|
4
|
Xia G, Fan Z, Wang Q, Li J, Zhang Y, Aipire A, Su Q, Li Y, Hou Z, Li J. Cascade-recharged macrophage-biomimetic ruthenium-based nanobattery for enhanced photodynamic-induced immunotherapy. J Nanobiotechnology 2025; 23:167. [PMID: 40038652 PMCID: PMC11881368 DOI: 10.1186/s12951-025-03255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
Photodynamic-induced immunotherapy (PDI) is often hampered by low reactive oxygen species (ROS) yield, intra-tumor hypoxia, high glutathione (GSH) concentration, and immunosuppressive microenvironment. In view of this, a ruthenium (Ru)-based nanobattery (termed as IRD) with cascade-charged oxygen (O2), ROS, and photodynamic-induced immunotherapy by coordination-driven self-assembly of transition-metal Ru, photosensitizer indocyanine green (ICG), and organic ligand dithiobispropionic acid (DTPA). Then, IRD is camouflaged with macrophage membranes to obtain a nanobattery (termed as IRD@M) with targeting and immune evasion capabilities. Upon intravenous administration, IRD@M with a core-shell structure, nano diameter, and good stability can specifically hoard in tumor location and internalize into tumor cells. Upon disassembly triggered by GSH, the released Ru³⁺ not only catalyzes the conversion of endogenous hydrogen peroxide (H₂O₂) into O₂ to alleviate tumor hypoxia and reduce the expression of hypoxia-inducible factor-1α (HIF-1α), but also generates hydroxyl radicals (·OH) to elevate intracellular ROS levels. This process significantly enhances the photodynamic therapy (PDT) efficacy of the released ICG. Meanwhile, the released DTPA can significantly downregulate overexpressed GSH to reduce the elimination of ROS deriving from PDT by the exchange reaction of thiol-disulfide bond. It is also found that alleviating the hypoxic tumor microenvironment synergistically enhances the PDT efficacy, which in turn cascades to recharge the subsequent immune response, significantly improving the immunosuppressive tumor microenvironment and activating systemic tumor-specific immunity. Notably, in vitro and in vivo experimental results jointly confirm that such cascade-recharged macrophage-biomimetic Ru-based nanobattery IRD@M can achieve an obvious tumor elimination while results in a minimized side effect. Taken together, this work highlights a promising strategy for simple, flexible, and effective Ru-based immunogenic cell death (ICD) agents within PDI.
Collapse
Affiliation(s)
- Guoyu Xia
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Zhongxiong Fan
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China.
| | - Qingluo Wang
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jianmin Li
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Yuxiang Zhang
- Xinjiang Medical University, Affiliated Hospital 6, Urumqi, 830002, China
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Qiurong Su
- Xiamen Key Laboratory of Traditional Chinese Bio-Engineering, Xiamen Medical College, Xiamen, 361023, China
| | - Ying Li
- Xiamen Key Laboratory of Traditional Chinese Bio-Engineering, Xiamen Medical College, Xiamen, 361023, China.
| | - Zhenqing Hou
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China.
- College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
5
|
Meng X, Wang X, Zhang Z, Song L, Chen J. Recent Advancements of Nanomedicine in Breast Cancer Surgery. Int J Nanomedicine 2024; 19:14143-14169. [PMID: 39759962 PMCID: PMC11699852 DOI: 10.2147/ijn.s494364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
Breast cancer surgery plays a pivotal role in the multidisciplinary approaches. Surgical techniques and objectives are gradually shifting from tumor complete resection towards prolonging survival, improving cosmetic outcomes, and restoring the social and psychological well-being of patients. However, surgical treatment still faces challenges such as inadequate sensitivity in sentinel lymph node localization, the need to improve intraoperative tumor boundary localization imaging, postoperative scar healing, and the risk of recurrence, necessitating other adjunct measures for improvement. To address these challenges, specificity-optimized nanomedicines have been introduced into the surgical therapeutic landscape of breast cancer. In particular, this review involves starting with an overview of breast structure and the composition of the tumor microenvironment and then introducing the guiding principle and foundation for the design of nanomedicine. Moreover, we will take the order process of breast cancer surgery diagnosis and treatment as the starting point, and adaptively propose the roles and advantages of nanomedicine in addressing the corresponding issues. Furthermore, we also involved the prospects of utilizing advanced technological approaches. Overall, this review seeks to uncover the sophisticated design and strategies of nanomedicine from a clinical standpoint, address the challenges faced in surgical treatment, and provide insights into this subject matter.
Collapse
Affiliation(s)
- Xiangyue Meng
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xin Wang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Zhihao Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Linlin Song
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jie Chen
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
6
|
Hu P, Jia Z, Zhao S, Lin K, Yang G, Guo W, Yu S, Cheng J, Du G, Shi J. Injectable Therapeutic Hydrogel with H 2O 2 Self-Supplying and GSH Consumption for Synergistic Chemodynamic/Low-Temperature Photothermal Inhibition of Postoperative Tumor Recurrence and Wound Infection. Adv Healthc Mater 2024; 13:e2401551. [PMID: 38923861 DOI: 10.1002/adhm.202401551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Postoperative tumor recurrence and wound infection remain significant clinical challenges in surgery, often requiring adjuvant therapies. The combination treatment of photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be effective in cancer treatment and wound infection. However, the hyperthermia during PTT increases the risk of normal tissue damage, severely impeding its application. Moreover, the efficacy of CDT is limited by insufficient hydrogen peroxide (H2O2) and excessive glutathione (GSH) levels at tumor or infection sites. Herein, an injectable and multifunctional CuO2@Au hydrogel system (CuO2@Au Gel) is developed for synergistic CDT and low-temperature PTT (LTPTT) to prevent tumor recurrence and bacterial wound infections. CuO2@Au Gel is constructed by embedding therapeutic CuO2@Au into low-melting point agarose hydrogel. In vitro and in vivo experiments confirm that the CuO2@Au in CuO2@Au Gel is capable of self-supplying H2O2 and depleting GSH, exhibiting effective CDT effect in acidic tumor or bacterial infected microenvironment. Additionally, it exhibits favorable photothermal conversion ability, inducing localized temperature elevation and synergistically enhancing CDT efficiency. The prepared CuO2@Au Gel demonstrates efficient tumor ablation capability in post-surgery recurrence mouse models and exhibits promising anti-infective efficiency in bacterial infection wound models, indicating significant potential in adjuvant therapy for post-surgical treatment and recovery.
Collapse
Affiliation(s)
- Peng Hu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Zhili Jia
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Shuang Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Kunpeng Lin
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Guoye Yang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Wujie Guo
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Shuling Yu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jianjun Cheng
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Guanhua Du
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jiahua Shi
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| |
Collapse
|
7
|
Ma C, Cheng Z, Tan H, Wang Y, Sun S, Zhang M, Wang J. Nanomaterials: leading immunogenic cell death-based cancer therapies. Front Immunol 2024; 15:1447817. [PMID: 39185425 PMCID: PMC11341423 DOI: 10.3389/fimmu.2024.1447817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The field of oncology has transformed in recent years, with treatments shifting from traditional surgical resection and radiation therapy to more diverse and customized approaches, one of which is immunotherapy. ICD (immunogenic cell death) belongs to a class of regulatory cell death modalities that reactivate the immune response by facilitating the interaction between apoptotic cells and immune cells and releasing specific signaling molecules, and DAMPs (damage-associated molecular patterns). The inducers of ICD can elevate the expression of specific proteins to optimize the TME (tumor microenvironment). The use of nanotechnology has shown its unique potential. Nanomaterials, due to their tunability, targeting, and biocompatibility, have become powerful tools for drug delivery, immunomodulators, etc., and have shown significant efficacy in clinical trials. In particular, these nanomaterials can effectively activate the ICD, trigger a potent anti-tumor immune response, and maintain long-term tumor suppression. Different types of nanomaterials, such as biological cell membrane-modified nanoparticles, self-assembled nanostructures, metallic nanoparticles, mesoporous materials, and hydrogels, play their respective roles in ICD induction due to their unique structures and mechanisms of action. Therefore, this review will explore the latest advances in the application of these common nanomaterials in tumor ICD induction and discuss how they can provide new strategies and tools for cancer therapy. By gaining a deeper understanding of the mechanism of action of these nanomaterials, researchers can develop more precise and effective therapeutic approaches to improve the prognosis and quality of life of cancer patients. Moreover, these strategies hold the promise to overcome resistance to conventional therapies, minimize side effects, and lead to more personalized treatment regimens, ultimately benefiting cancer treatment.
Collapse
Affiliation(s)
- Changyu Ma
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Beijing, China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Haotian Tan
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Beijing, China
| | - Yihan Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical College, Peking University Health Science Center, Beijing, China
| | - Shuzhan Sun
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical College, Peking University Health Science Center, Beijing, China
| | - Mingxiao Zhang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Jianfeng Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
8
|
Wang S, Zhang R, Li X, Chen Y, Zhu L, Yang B, Wang J, Du YH, Liu J, Ye TT, Wang S. "Rigid-Flexible" Dual-Ferrocene Chimeric Nanonetwork for Simultaneous Tumor-Targeted Tracing and Photothermal/Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36142-36156. [PMID: 38968001 DOI: 10.1021/acsami.4c06437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
There is an urgent need to develop phototherapeutic agents with imaging capabilities to assess the treatment process and efficacy in real-time during cancer phototherapy for precision cancer therapy. The safe near-infrared (NIR) fluorescent dyes have garnered significant attention and are desirable for theranostics agents. However, until now, achieving excellent photostability and fluorescence (FL) imaging capability in aggregation-caused quenching (ACQ) dyes remains a big challenge. Here, for the only FDA-approved NIR dye, indocyanine green (ICG), we developed a dual-ferrocene (Fc) chimeric nanonetwork ICG@HFFC based on the rigid-flexible strategy through one-step self-assembly, which uses rigid Fc-modified hyaluronic acid (HA) copolymer (HA-Fc) and flexible octadecylamine (ODA) bonded Fc (Fc-C18) as the delivery system. HA-Fc reserved the ability of HA to target the CD44 receptor of the tumor cell surface, and the dual-Fc region provided a rigid space for securely binding ICG through metal-ligand interaction and π-π conjugation, ensuring excellent photostability. Additionally, the alkyl chain provided flexible confinement for the remaining ICG through hydrophobic forces, preserving its FL. Thereby, a balance is achieved between outstanding photostability and FL imaging capability. In vitro studies showed improved photobleaching resistance, enhanced FL stability, and increased singlet oxygen (1O2) production efficiency in ICG@HFFC. Further in vivo results display that ICG@HFFC had good tumor tracing ability and significant tumor inhibition which also exhibited good biocompatibility.. Therefore, ICG@HFFC provides an encouraging strategy to realize simultaneous enhanced tumor tracing and photothermal/photodynamic therapy (PTT/PDT) and offers a novel approach to address the limitations of ACQ dyes.
Collapse
Affiliation(s)
- Sixue Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Rui Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Xianqiang Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Yan Chen
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Lili Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Boyang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Jiale Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Yu Hao Du
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Jun Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Tian Tian Ye
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Shujun Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| |
Collapse
|
9
|
Xia Z, Mu W, Yuan S, Fu S, Liu Y, Zhang N. Cell Membrane Biomimetic Nano-Delivery Systems for Cancer Therapy. Pharmaceutics 2023; 15:2770. [PMID: 38140108 PMCID: PMC10748133 DOI: 10.3390/pharmaceutics15122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Nano-delivery systems have demonstrated great promise in the therapy of cancer. However, the therapeutic efficacy of conventional nanomedicines is hindered by the clearance of the blood circulation system and the physiological barriers surrounding the tumor. Inspired by the unique capabilities of cells within the body, such as immune evasion, prolonged circulation, and tumor-targeting, there has been a growing interest in developing cell membrane biomimetic nanomedicine delivery systems. Cell membrane modification on nanoparticle surfaces can prolong circulation time, activate tumor-targeting, and ultimately improve the efficacy of cancer treatment. It shows excellent development potential. This review will focus on the advancements in various cell membrane nano-drug delivery systems for cancer therapy and the obstacles encountered during clinical implementation. It is hoped that such discussions will inspire the development of cell membrane biomimetic nanomedical systems.
Collapse
Affiliation(s)
- Zhenxing Xia
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| | - Weiwei Mu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| | - Shijun Yuan
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| | - Shunli Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| | - Yongjun Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| | - Na Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| |
Collapse
|