1
|
Aires I, Parada B, Ferreira R, Oliveira PA. Recent animal models of bladder cancer and their application in drug discovery: an update of the literature. Expert Opin Drug Discov 2025:1-21. [PMID: 39954010 DOI: 10.1080/17460441.2025.2465373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/29/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION Bladder cancer presents a significant health problem worldwide, with environmental and genetic factors contributing to its incidence. Histologically, it can be classified as carcinoma in situ, non-muscle invasive and muscle-invasive carcinoma, each one with distinct genetic alterations impacting prognosis and response to therapy. While traditional transurethral resection is commonly performed in carcinoma in situ and non-muscle invasive carcinoma, it often fails to prevent recurrence or progression to more aggressive phenotypes, leading to the frequent need for additional treatment such as intravesical chemotherapy or immunotherapy. Despite the advances made in recent years, treatment options for bladder cancer are still lacking due to the complex nature of this disease. So, animal models may hold potential for addressing these limitations, because they not only allow the study of disease progression but also the evaluation of therapies and the investigation of drug repositioning. AREAS COVERED This review discusses the use of animal models over the past decade, highlighting key discoveries and discussing advantages and disadvantages for new drug discovery. EXPERT OPINION Over the past decade animal models have been employed to evaluate new mechanisms underlying the responses to standard therapies, aiming to optimize bladder cancer treatment. The authors propose that molecular engineering techniques and AI may hold promise for the future development of more precise and effective targeted therapies in bladder cancer.
Collapse
Affiliation(s)
- Inês Aires
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Belmiro Parada
- Coimbra Institute for Clinical and Biomedical, University of Coimbra, Coimbra, Portugal
| | - Rita Ferreira
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
2
|
Kumbham S, Md Mahabubur Rahman K, Foster BA, You Y. A Comprehensive Review of Current Approaches in Bladder Cancer Treatment. ACS Pharmacol Transl Sci 2025; 8:286-307. [PMID: 39974639 PMCID: PMC11833730 DOI: 10.1021/acsptsci.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
Bladder cancer is one of the most common malignant tumors of the urinary system globally. It is also one of the most expensive cancers to manage, due to the need for extensive treatment and follow-ups that often involve invasive and costly procedures. Although there have been some improvements in treatment options, the quality of life they offer has not improved at the same rate as other cancers. Therefore, there is an urgent need to find new alternatives to ease the burden of bladder cancer on patients. Recent discoveries have opened new avenues for the diagnosis and management of bladder cancer even though the clinical approach has largely remained the same for years. The decline in bladder cancer-specific mortality in regions that promote social awareness of risk factors and reduction of carcinogenic exposure demonstrates the effectiveness of such measures. New agents have been approved for patients who have undergone radical cystectomy after Bacillus Calmette-Guérin failure. Current best practices for diagnosing and treating bladder cancer are presented in this review. The review discusses radiation therapy, photodynamic therapy, gene therapy, chemotherapy, and nanomedicine in relation to non muscle-invasive cancers and muscle-invasive bladder cancers, as well as systemic treatments.
Collapse
Affiliation(s)
- Soniya Kumbham
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Kazi Md Mahabubur Rahman
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Barbara A. Foster
- Department
of Pharmacology & Therapeutics, Roswell
Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Youngjae You
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
3
|
Zhao X, Qi X, Liu D, Che X, Wu G. A Novel Approach for Bladder Cancer Treatment: Nanoparticles as a Drug Delivery System. Int J Nanomedicine 2024; 19:13461-13483. [PMID: 39713223 PMCID: PMC11662911 DOI: 10.2147/ijn.s498729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
Bladder cancer represents one of the most prevalent malignant neoplasms of the urinary tract. In the Asian context, it represents the eighth most common cancer in males. In 2022, there were approximately 613,791 individuals diagnosed with bladder cancer worldwide. Despite the availability of efficacious treatments for the two principal forms of bladder cancer, namely non-invasive and invasive bladder cancer, the high incidence of recurrence following treatment and the suboptimal outcomes observed in patients with high-grade and advanced disease represent significant concerns in the management of bladder cancer at this juncture. Nanoparticles have gained attention for their excellent properties, including stable physical properties, a porous structure that can be loaded with a variety of substances, and so on. The in-depth research on nanoparticles has led to their emergence as a new class of nanoparticles for combination therapy, due to their advantageous properties. These include the extension of the drug release window, the enhancement of drug bioavailability, the improvement of drug targeting ability, the reduction of local and systemic toxicity, and the simultaneous delivery of multiple drugs for combination therapy. As a result, nanoparticles have become a novel agent of the drug delivery system. The advent of nanoparticles has provided a new impetus for the development of non-surgical treatments for bladder cancer, including chemotherapy, immunotherapy, gene therapy and phototherapy. The unique properties of nanoparticles have facilitated the combination of diverse non-surgical therapeutic modalities, enhancing their overall efficacy. This review examines the recent advancements in the use of nanoparticles in non-surgical bladder cancer treatments, encompassing aspects such as delivery, therapeutic efficacy, and the associated toxicity of nanoparticles, as well as the challenges encountered in clinical applications.
Collapse
Affiliation(s)
- Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| |
Collapse
|
4
|
Han L, Yang H, Jiang X, Zhou Z, Ge C, Yu K, Li G, Wang W, Liu Y. Prognostic model based on disulfidptosis-related lncRNAs for predicting survival and therapeutic response in bladder cancer. Front Immunol 2024; 15:1512203. [PMID: 39687628 PMCID: PMC11647029 DOI: 10.3389/fimmu.2024.1512203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Background With poor treatment outcomes and prognosis, bladder cancer remains a focus for clinical research in the precision oncology era. However, the potential of disulfidptosis, a novel cell death mechanism, and its related long non-coding RNAs to support selective cancer cell killing in this disease is still unclear. Methods We identified key disulfidptosis-related lncRNAs in bladder cancer, constructed a prognostic risk model with potential therapeutic targets, and confirmed the findings through quantitative PCR analysis. Results We identified five crucial lncRNAs (AC005840.4, AC010331.1, AL021707.6, MIR4435-2HG and ARHGAP5-AS1) and integrated them into a predictive model centered on disulfidptosis-associated lncRNAs. Reliability and validity tests demonstrated that the lncRNA prediction index associated with disulfidptosis effectively discerns patients' prognosis outcomes. Additionally, high-risk patients exhibited elevated expression levels of genes involved in the PI3K-Akt signaling pathway, extracellular matrix organization, and immune escape mechanisms, which are associated with poor prognosis. Notably, high-risk patients demonstrated higher sensitivity to Sorafenib, Oxaliplatin and MK-2206, underscoring the promise of these lncRNAs as precise therapeutic targets in bladder cancer. Conclusion By revealing the predictive importance of disulfidptosis-associated lncRNAs in bladder cancer, our research offers new perspectives and pinpoints potential therapeutic targets in clinical environments.
Collapse
Affiliation(s)
- Lirui Han
- Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Hankai Yang
- Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Xuan Jiang
- Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Ziyu Zhou
- Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Chang Ge
- Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Kairan Yu
- Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Guofang Li
- Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Wei Wang
- Ministry of Education (MOE) Key Laboratory of Bio-Intelligent Manufacturing, Dalian University of Technology, Dalian, China
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Liaoning, Shenyang, China
| | - Yubo Liu
- Department of Life and Pharmaceutical Sciences, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
- Ministry of Education (MOE) Key Laboratory of Bio-Intelligent Manufacturing, Dalian University of Technology, Dalian, China
| |
Collapse
|
5
|
Lv M, Shang S, Liu K, Wang Y, Xu P, Song H, Zhang J, Sun Z, Yan Y, Zhu Z, Wu H, Li H. Revitalizing Bacillus Calmette-Guérin Immunotherapy for Bladder Cancer: Nanotechnology and Bioengineering Approaches. Pharmaceutics 2024; 16:1067. [PMID: 39204412 PMCID: PMC11359013 DOI: 10.3390/pharmaceutics16081067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Bacillus Calmette-Guérin (BCG) immunotherapy has been a cornerstone treatment for non-muscle-invasive bladder cancer for decades and still faces challenges, such as severe immune adverse reactions, which reduce its use as a first-line treatment. This review examines BCG therapy's history, mechanisms, and current status, highlighting how nanotechnology and bioengineering are revitalizing its application. We discuss novel nanocarrier systems aimed at enhancing BCG's efficacy while mitigating specific side effects. These approaches promise improved tumor targeting, better drug loading, and an enhanced stimulation of anti-tumor immune responses. Key strategies involve using materials such as liposomes, polymers, and magnetic particles to encapsulate BCG or functional BCG cell wall components. Additionally, co-delivering BCG with chemotherapeutics enhances drug targeting and tumor-killing effects while reducing drug toxicity, with some studies even achieving synergistic effects. While most studies remain experimental, this research direction offers hope for overcoming BCG's limitations and advancing bladder cancer immunotherapy. Further elucidation of BCG's mechanisms and rigorous safety evaluations of new delivery systems will be crucial for translating these innovations into clinical practice.
Collapse
Affiliation(s)
- Maoxin Lv
- Department of Urology, First Affiliated Hospital, Kunming Medical University, Kunming 650000, China;
- School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
| | - Shihao Shang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Kepu Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Yuliang Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Peng Xu
- School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710061, China
| | - Hao Song
- School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jie Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Zelong Sun
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Yuhao Yan
- Student Brigade of Basic Medicine School, Fourth Military Medical University, Xi’an 710032, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Hao Wu
- School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710061, China
| | - Hao Li
- Department of Urology, First Affiliated Hospital, Kunming Medical University, Kunming 650000, China;
| |
Collapse
|
6
|
Obireddy SR, Lai WF. Advances in preclinical approaches for intravesical therapy of bladder cancer. Curr Opin Urol 2024; 34:227-235. [PMID: 38757170 DOI: 10.1097/mou.0000000000001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to explore new strategies to treat bladder cancer. This article addresses challenges and opportunities in intravesical therapy of bladder cancer. RECENT FINDINGS The review examines the latest advances in the development of preclinical approaches for intravesical therapy of bladder cancer. It discusses strategies to improve drug delivery efficiency by using synthesized diverse carriers. Immunotherapy with protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride has been shown to be more effective than intravesical Bacillus Calmette-Guerin. Novel drug delivery systems such the urinary drug-disposing strategy and intravesical nanoparticle formulations improve the drug delivery efficiency while minimizing adverse reactions. Innovative imaging techniques using near-infrared fluorescence probes and multifunctional nano-transformers enable real-time detection and targeted therapy in bladder cancer treatment. SUMMARY Treatment of bladder cancer is clinically challenging. However, recent progress in drug delivery technologies shows promise. Optimizing these technologies helps improve patient outcomes, and facilitates clinical translation of different treatment modalities.
Collapse
Affiliation(s)
- Sreekanth Reddy Obireddy
- Department of Chemistry, Sri Krishnadevaraya University, Ananthapur, India
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China
| | - Wing-Fu Lai
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| |
Collapse
|
7
|
Qi H, Li Y, Geng Y, Wan X, Cai X. Nanoparticle-mediated immunogenic cell death for cancer immunotherapy. Int J Pharm 2024; 656:124045. [PMID: 38561134 DOI: 10.1016/j.ijpharm.2024.124045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The field of cancer therapy is witnessing the emergence of immunotherapy, an innovative approach that activates the body own immune system to combat cancer. Immunogenic cell death (ICD) has emerged as a prominent research focus in the field of cancer immunotherapy, attracting significant attention in recent years. The activation of ICD can induce the release of damage-associated molecular patterns (DAMPs), such as calreticulin (CRT), adenosine triphosphate (ATP), high mobility group box protein 1 (HMGB1), and heat shock proteins (HSP). Subsequently, this process promotes the maturation of innate immune cells, including dendritic cells (DCs), thereby triggering a T cell-mediated anti-tumor immune response. The activation of the ICD ultimately leads to the development of long-lasting immune responses against tumors. Studies have demonstrated that partial therapeutic approaches, such as chemotherapy with doxorubicin, specific forms of radiotherapy, and phototherapy, can induce the generation of ICD. The main focus of this article is to discuss and review the therapeutic methods triggered by nanoparticles for ICD, while briefly outlining their anti-tumor mechanism. The objective is to provide a comprehensive reference for the widespread application of ICD.
Collapse
Affiliation(s)
- Haolong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Yuan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Yingjie Geng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China.
| |
Collapse
|