1
|
Wu J, Jin Z, Fu T, Qian Y, Bian X, Zhang X, Zhang J. Extracellular Vesicle-Based Drug Delivery Systems in Cancer Therapy. Int J Mol Sci 2025; 26:4835. [PMID: 40429976 PMCID: PMC12112466 DOI: 10.3390/ijms26104835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/05/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles secreted by cells and ubiquitously present in various biofluids. They not only mediate intercellular communication but also serve as promising drug carriers that are capable of delivering therapeutic agents to target cells through their inherent physicochemical properties. In this review, we summarized the recent advances in EV isolation techniques and innovative drug-loading strategies. Furthermore, we emphasized the distinct advantages and therapeutic applications of EVs derived from different cellular sources in cancer treatment. Finally, we critically evaluated the ongoing clinical trials utilizing EVs for drug delivery and systematically assessed both the opportunities and challenges associated with implementing EV-based drug delivery systems in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (J.W.); (Z.J.); (T.F.); (Y.Q.); (X.B.)
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (J.W.); (Z.J.); (T.F.); (Y.Q.); (X.B.)
| |
Collapse
|
2
|
Lei X, Ring S, Jin S, Singh S, Mahnke K. Extracellular Vesicles and Their Role in Skin Inflammatory Diseases: From Pathogenesis to Therapy. Int J Mol Sci 2025; 26:3827. [PMID: 40332512 PMCID: PMC12027629 DOI: 10.3390/ijms26083827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, are released into the extracellular space by almost all known cell types. They facilitate communication between cells by transferring bioactive molecules, which impact both physiological processes and the development of diseases. EVs play a crucial role in the pathogenesis of various diseases by participating in multiple pathological processes. They contribute to disease progression by triggering cytokine release, modulating immune cell activity, and inducing inflammatory and immune responses. Beyond their pathological implications, EVs also offer significant therapeutic potential. Both natural and engineered EVs show great potential in the fields of targeted therapy, drug delivery, and immune modulation in dermatological applications. The development of EV-based treatments is showing promise in advancing patient outcomes, particularly in chronic inflammatory and immune-mediated skin conditions. This review comprehensively examined the biogenesis, classification, and functional roles of EVs, including advanced methods for their isolation and characterization. Furthermore, we summarized recent studies highlighting the involvement of EVs in four major inflammatory skin diseases: psoriasis, atopic dermatitis, systemic lupus erythematosus, and wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany; (X.L.); (S.R.); (S.J.); (S.S.)
| |
Collapse
|
3
|
Delgado-Almenta V, Blaya-Cánovas JL, Calahorra J, López-Tejada A, Griñán-Lisón C, Granados-Principal S. Cancer Vaccines and Beyond: The Transformative Role of Nanotechnology in Immunotherapy. Pharmaceutics 2025; 17:216. [PMID: 40006583 PMCID: PMC11859086 DOI: 10.3390/pharmaceutics17020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality globally, responsible for approximately 10 million deaths in 2022 and an estimated 21 million new cases in 2024. Traditional cancer treatments such as surgery, radiation therapy, and chemotherapy often present limitations in efficacy and side effects. However, immunotherapeutic vaccines have emerged as a promising approach, leveraging the body's immune system to target and eliminate cancer cells. This review examines the evolving landscape of cancer vaccines, differentiating between preventive and therapeutic strategies and highlighting the significance of tumor-specific antigens, including tumor-associated antigens (TAAs) and neoantigens. Recent advancements in vaccine technology, particularly through nanotechnology, have resulted in the development of nanovaccines, which enhance antigen stability, optimize delivery to immune cells, and promote robust immune responses. Notably, clinical data indicate that patients receiving immune checkpoint inhibitors can achieve overall survival rates of approximately 34.8 months compared to just 15.7 months for traditional therapies. Despite these advancements, challenges remain, such as the immunosuppressive tumor microenvironment and tumor heterogeneity. Emerging evidence suggests that combining nanovaccines with immunomodulators may enhance therapeutic efficacy by overcoming these obstacles. Continued research and interdisciplinary collaboration will be essential to fully exploit the promise of nanovaccines, ultimately leading to more effective and accessible treatments for cancer patients. The future of cancer immunotherapy appears increasingly hopeful as these innovative strategies pave the way for enhanced patient outcomes and an improved quality of life in oncology.
Collapse
Affiliation(s)
- Violeta Delgado-Almenta
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (V.D.-A.); (J.L.B.-C.); (J.C.); (A.L.-T.)
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (V.D.-A.); (J.L.B.-C.); (J.C.); (A.L.-T.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Jesús Calahorra
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (V.D.-A.); (J.L.B.-C.); (J.C.); (A.L.-T.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (V.D.-A.); (J.L.B.-C.); (J.C.); (A.L.-T.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18011 Granada, Spain
| | - Carmen Griñán-Lisón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (V.D.-A.); (J.L.B.-C.); (J.C.); (A.L.-T.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18011 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), Centro de Investigación Biomédica (CIBM), University of Granada, 18016 Granada, Spain
| | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (V.D.-A.); (J.L.B.-C.); (J.C.); (A.L.-T.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18011 Granada, Spain
| |
Collapse
|