1
|
Ljubić A, Dinić M, Švraka D, Vujović S. Dual-Double Stem Cell Ovarian Therapy: A Comprehensive Approach in Regenerative Medicine. Int J Mol Sci 2024; 26:69. [PMID: 39795929 PMCID: PMC11719681 DOI: 10.3390/ijms26010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 01/13/2025] Open
Abstract
Dual-double stem cell therapy, which integrates mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), represents a cutting-edge approach in regenerative medicine, particularly for conditions such as ovarian decline, premature ovarian insufficiency (POI), and induced ovarian failure. This therapy leverages the unique properties of MSCs and HSCs, enhancing tissue repair, immune modulation, and overall regenerative outcomes. MSCs, known for their ability to differentiate into various cell types, provide a supportive microenvironment and secrete bioactive molecules that promote angiogenesis and reduce inflammation. HSCs, crucial for hematopoiesis and immune function, further enhance this environment by supporting hematopoietic processes and immune regulation. Clinical evidence increasingly supports the effectiveness of stem cell therapy in ovarian regeneration. Studies have demonstrated improved folliculogenesis, normalization of hormone profiles, and successful pregnancies in patients with POI. Furthermore, recent clinical trials in various medical fields underline the superior potential of dual-double therapy compared to monotherapies involving MSCs or HSCs alone, enhancing tissue repair and functional outcomes. However, despite these benefits, the therapy presents risks that require careful consideration. For autologous MSC therapy involving expanded cell populations, risks include tumorigenic potential, with evidence of sarcoma formation in certain cases of cultured MSCs. In contrast, autologous non-expanded MSC and HSC therapies may be limited by low cell yields, potentially compromising therapeutic efficacy. Additionally, non-expanded HSC therapy poses risks of insufficient cell numbers for successful engraftment and delayed immune reconstitution. These considerations underscore the importance of quality control and rigorous screening to optimize safety and efficacy. This article explores the mechanisms of action, clinical applications, and potential complications of dual-double stem cell therapy, underscoring the need for continued research and optimized protocols to enhance safety and outcomes in ovarian insufficiency and related conditions, offering new hope for affected women.
Collapse
Affiliation(s)
- Aleksandar Ljubić
- Pronatal Hospital, 11000 Belgrade, Serbia;
- Academy of Sciences and Arts of Bosnia and Herzegovina, 71000 Sarajevo, Bosnia and Herzegovina
- Medigroup Health System, Dubrovnik International University, 20000 Dubrovnik, Croatia
| | - Marija Dinić
- Department of Therapeutic Apheresis, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | | | - Svetlana Vujović
- Clinic of Endocrinology, Diabetes and Diseases of National Center for Infertility and Endocrinology of Gender, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Shestakova VA, Klabukov ID, Kolobaev IV, Rao L, Atiakshin DA, Ignatyuk MA, Krasheninnikov ME, Ahmedov BG, Ivanov SA, Shegay PV, Kaprin AD, Baranovskii DS. Pathologically altered articular cartilage attracts intense chondrocyte invasion into the extracellular matrix: in vitro pilot study. Knee Surg Relat Res 2024; 36:42. [PMID: 39627845 PMCID: PMC11613889 DOI: 10.1186/s43019-024-00249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Due to non-vascularized and aneural structure, articular cartilage has limited self-repairing capacity. The aim of this study was to investigate the revitalization of inflammatory injured articular cartilage matrices by human nasal chondrocytes (hNC). MATERIALS AND METHODS Cartilage matrix was prepared by devitalization of articular cartilage samples obtained intraoperatively from an adult patient undergoing knee joint replacement. hNC were obtained from native tissues by enzymatic digestion with further expansion over two passages. The obtained nasal chondrocytes were used to seed decellularized scaffolds, which were then cultured in vitro for 7, 14, or 21 days in chondrogenic medium. Migration was observed by histologic staining with fast green, safranin-O, and hematoxylin and scanning electron microscopy. Biochemical analysis was performed to determine the glycosaminoglycan (GAG) and DNA content of the cartilage using dimethylmethylene blue and CyQuant Cell Proliferation Assay Kit. RESULTS We seeded healthy and inflamed cartilage with nasal chondrocytes and found that the cells actively invade mainly pathologically altered cartilage. The results of biochemical quantitative analysis showed that the amount of DNA significantly increased by day 7 and decreased by day 14, while the quantitative values of GAGs had the opposite trend. Histological staining showed that cartilage formation occurred on day 7, intercellular spaces were filled with de novo synthesized cartilage matrix with significantly low GAG content on day 14, and newly formed GAG-rich cartilage was observed on day 21. The obtained data on cartilage regeneration were confirmed by scanning electron microscopy. CONCLUSIONS Our preliminary results showed that human nasal chondrocytes are capable of infiltrating the pathologically altered extracellular matrix of articular cartilage damaged by arthritis, thereby promoting its repair to a physiologically relevant state.
Collapse
Affiliation(s)
- Victoria A Shestakova
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036, Obninsk, Russia.
- Obninsk Institute for Nuclear Power Engineering of the National Research Nuclear University MEPhI, Obninsk, Russia.
| | - Ilya D Klabukov
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036, Obninsk, Russia
- Obninsk Institute for Nuclear Power Engineering of the National Research Nuclear University MEPhI, Obninsk, Russia
- Patrice Lumumba Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Ilya V Kolobaev
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036, Obninsk, Russia
| | | | - Dmitry A Atiakshin
- Patrice Lumumba Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Michael A Ignatyuk
- Patrice Lumumba Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Bagavdin G Ahmedov
- National Medical Research Center for Surgery named after A.V. Vishnevsky of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergey A Ivanov
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036, Obninsk, Russia
| | - Peter V Shegay
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036, Obninsk, Russia
| | - Andrey D Kaprin
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036, Obninsk, Russia
- Patrice Lumumba Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Denis S Baranovskii
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036, Obninsk, Russia
- Patrice Lumumba Peoples Friendship University of Russia (RUDN University), Moscow, Russia
- University of Basel, Basel, Switzerland
- FSBEI HE "Rosunimed" of MOH of Russia, Moscow, Russia
| |
Collapse
|
3
|
Pan Y, Li Y, Dong W, Jiang B, Yu Y, Chen Y. Role of nano-hydrogels coated exosomes in bone tissue repair. Front Bioeng Biotechnol 2023; 11:1167012. [PMID: 37229488 PMCID: PMC10204869 DOI: 10.3389/fbioe.2023.1167012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
With the development of nanotechnology, nanomaterials are widely applied in different areas. Some nanomaterials are designed to be biocompatible and can be used in the medical field, playing an important role in disease treatment. Exosomes are nanoscale vesicles with a diameter of 30-200 nm. Studies have shown that exosomes have the effect of angiogenesis, tissue (skin, tendon, cartilage, et al.) repair and reconstruction. Nano-hydrogels are hydrogels with a diameter of 200 nm or less and can be used as the carrier to transport the exosomes into the body. Some orthopedic diseases, such as bone defects and bone infections, are difficult to handle. The emergence of nano-hydrogels coated exosomes may provide a new idea to solve these problems, improving the prognosis of patients. This review summarizes the function of nano-hydrogels coated exosomes in bone tissue repair, intending to illustrate the potential use and application of nano-hydrogels coated exosomes in bone disease.
Collapse
Affiliation(s)
- Yuqi Pan
- Department of Joint Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yige Li
- Department of Rehabilitation, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjun Dong
- Department of Joint Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowei Jiang
- Department of Joint Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Yu
- Department of Joint Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunsu Chen
- Department of Joint Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Hart DA. Osteoarthritis as an Umbrella Term for Different Subsets of Humans Undergoing Joint Degeneration: The Need to Address the Differences to Develop Effective Conservative Treatments and Prevention Strategies. Int J Mol Sci 2022; 23:ijms232315365. [PMID: 36499704 PMCID: PMC9736942 DOI: 10.3390/ijms232315365] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) of joints such as the knee and hip are very prevalent, and the number of individuals affected is expected to continue to rise. Currently, conservative treatments after OA diagnosis consist of a series of increasingly invasive interventions as the degeneration and pain increase, leading very often to joint replacement surgery. Most interventions are focused on alleviating pain, and there are no interventions currently available that stop and reverse OA-associated joint damage. For many decades OA was considered a disease of cartilage, but it is now considered a disease of the whole multi-tissue joint. As pain is the usual presenting symptom, for most patients, it is not known when the disease process was initiated and what the basis was for the initiation. The exception is post-traumatic OA which results from an overt injury to the joint that elevates the risk for OA development. This scenario leads to very long wait lists for joint replacement surgery in many jurisdictions. One aspect of why progress has been so slow in addressing the needs of patients is that OA has been used as an umbrella term that does not recognize that joint degeneration may arise from a variety of mechanistic causes that likely need separate analysis to identify interventions unique to each subtype (post-traumatic, metabolic, post-menopausal, growth and maturation associated). A second aspect of the slow pace of progress is that the bulk of research in the area is focused on post-traumatic OA (PTOA) in preclinical models that likely are not clearly relevant to human OA. That is, only ~12% of human OA is due to PTOA, but the bulk of studies investigate PTOA in rodents. Thus, much of the research community is failing the patient population affected by OA. A third aspect is that conservative treatment platforms are not specific to each OA subset, nor are they integrated into a coherent fashion for most patients. This review will discuss the literature relevant to the issues mentioned above and propose some of the directions that will be required going forward to enhance the impact of the research enterprise to affect patient outcomes.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
5
|
Zhu Y, Fu W. Peripheral Blood-Derived Stem Cells for the Treatment of Cartilage Injuries: A Systematic Review. Front Bioeng Biotechnol 2022; 10:956614. [PMID: 35935493 PMCID: PMC9355401 DOI: 10.3389/fbioe.2022.956614] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The treatment of cartilage damage is a hot topic at present, and cell therapy is an emerging alternative therapy. Stem cells derived from peripheral blood have become the focus of current research due to the ease of obtaining materials and a wide range of sources.Methods: We used a text search strategy using the [“mesenchymal stem cells” (MeSH term) OR “MSC” OR “BMMSC” OR “PBMSC” OR” PBMNC” OR “peripheral blood stem cells”] AND (cartilage injury [MeSH term] OR “cartilage” OR “chondral lesion”). After searching the literature, through the inclusion and exclusion criteria, the last included articles were systematically reviewed.Result: We found that peripheral blood-derived stem cells have chondrogenic differentiation ability and can induce chondrogenic differentiation and repair in vivo and have statistical significance in clinical and imaging prognosis. It is an improvement of academic differences. Compared with the bone marrow, peripheral blood is easier to obtain, widely sourced, and simple to obtain. In the future, peripheral blood will be a more potential cell source for cell therapy in the treatment of cartilage damage.Conclusion: Stem cells derived from peripheral blood can repair cartilage and are an important resource for the treatment of cartilage damage in the future. The specific mechanism and way of repairing cartilage need further study.
Collapse
|