1
|
Natongchai W, Crespy D, D'Elia V. CO 2 fixation: cycloaddition of CO 2 to epoxides using practical metal-free recyclable catalysts. Chem Commun (Camb) 2025; 61:419-440. [PMID: 39635881 DOI: 10.1039/d4cc05291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The conversion of CO2 into valuable chemicals is a crucial field of research. Cyclic organic carbonates have attracted great interest because they can be prepared under mild conditions and because of their structural versatility which enables a large variety of applications. Therefore, there is a need for potent and yet practical catalysts for the cycloaddition of CO2 to cyclic carbonates that are able to combine availability, low cost and an adequate performance. We review here several recyclable catalytic systems that are readily available, easy to prepare, and inexpensive with an eye to the future development of more efficient practical catalysts through the provided guidelines.
Collapse
Affiliation(s)
- Wuttichai Natongchai
- Department of Materials Science and Engineering, VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Vidyasirimedhi Institute of Science and Technology, (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand
| | - Valerio D'Elia
- Department of Materials Science and Engineering, VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Vidyasirimedhi Institute of Science and Technology, (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
2
|
Tangyen N, Natongchai W, D’Elia V. Catalytic Strategies for the Cycloaddition of CO 2 to Epoxides in Aqueous Media to Enhance the Activity and Recyclability of Molecular Organocatalysts. Molecules 2024; 29:2307. [PMID: 38792168 PMCID: PMC11124216 DOI: 10.3390/molecules29102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
The cycloaddition of CO2 to epoxides to afford versatile and useful cyclic carbonate compounds is a highly investigated method for the nonreductive upcycling of CO2. One of the main focuses of the current research in this area is the discovery of readily available, sustainable, and inexpensive catalysts, and of catalytic methodologies that allow their seamless solvent-free recycling. Water, often regarded as an undesirable pollutant in the cycloaddition process, is progressively emerging as a helpful reaction component. On the one hand, it serves as an inexpensive hydrogen bond donor (HBD) to enhance the performance of ionic compounds; on the other hand, aqueous media allow the development of diverse catalytic protocols that can boost catalytic performance or ease the recycling of molecular catalysts. An overview of the advances in the use of aqueous and biphasic aqueous systems for the cycloaddition of CO2 to epoxides is provided in this work along with recommendations for possible future developments.
Collapse
Affiliation(s)
| | | | - Valerio D’Elia
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Wangchan, Thailand; (N.T.); (W.N.)
| |
Collapse
|
3
|
Sonzini P, Berthet N, Damiano C, Dufaud V, Gallo E. A metal-free porphyrin heterogenised onto SBA-15 silica: A performant material for the CO2 cycloaddition to epoxides and aziridines. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Liu S, Hou X, Xu A, Chu B, Li Y, Jin L, Lu J, Dong L, Fan M. Restrictive Regulation of Ionic Liquid Quaternary Ammonium Salt in SBA‐15 Pore Channel for Efficient Carbon Dioxide Conversion. Chemistry 2022; 28:e202202105. [DOI: 10.1002/chem.202202105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Shaoqing Liu
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Xueyan Hou
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education School of Energy and Environment Southeast University Nanjing 210096 Jiangsu P. R. China
| | - Aihao Xu
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Bingxian Chu
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Yunxi Li
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Lijian Jin
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Jinkai Lu
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Lihui Dong
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 P.R. China
| | - Minguang Fan
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 P.R. China
| |
Collapse
|
5
|
Razaghi M, Khorasani M. Boosting the quaternary ammonium halides catalyzed CO2 coupling with epoxides on the hollow mesoporous silica sphere. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Kazemzadeh P, Sayadi K, Toolabi A, Sayadi J, Zeraati M, Chauhan NPS, Sargazi G. Structure-Property Relationship for Different Mesoporous Silica Nanoparticles and its Drug Delivery Applications: A Review. Front Chem 2022; 10:823785. [PMID: 35372272 PMCID: PMC8964429 DOI: 10.3389/fchem.2022.823785] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are widely used as a promising candidate for drug delivery applications due to silica’s favorable biocompatibility, thermal stability, and chemical properties. Silica’s unique mesoporous structure allows for effective drug loading and controlled release at the target site. In this review, we have discussed various methods of MSNs’ mechanism, properties, and its drug delivery applications. As a result, we came to the conclusion that more in vivo biocompatibility studies, toxicity studies, bio-distribution studies and clinical research are essential for MSN advancement.
Collapse
Affiliation(s)
| | - Khalil Sayadi
- Department of Chemistry, Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ali Toolabi
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran
| | - Jalil Sayadi
- Department Environmental Engineering, University of Zabol, Zabol, Iran
| | - Malihe Zeraati
- Department of Materials Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Narendra Pal Singh Chauhan
- Department of Chemistry, Faculty of Science, Bhupal Nobles’ University, Udaipur, India
- *Correspondence: Ghasem Sargazi, ; Narendra Pal Singh Chauhan,
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- *Correspondence: Ghasem Sargazi, ; Narendra Pal Singh Chauhan,
| |
Collapse
|
7
|
Ye Y, Liang L, Zhang X, Sun J. Simple carbonaceous-material-loaded mesoporous SiO 2 composite catalyst for epoxide-CO 2 cycloaddition reaction. J Colloid Interface Sci 2021; 610:818-829. [PMID: 34893304 DOI: 10.1016/j.jcis.2021.11.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
In this paper, a novel arginine-glucose derived carbonaceous-material-loaded SiO2 composite catalyst (Ar-G-CM/SiO2) was synthesized from non-toxic and harmless reagents (arginine, glucose and tetraethylorthosilicate) by simple hydrothermal process. Mesoporous SiO2 with high specific area served as support for carbonaceous material and provided extra hydrogen bond donor (HBD) groups. Ar-G-CM/SiO2 with acid-base dual functional groups (COOH, NH2) and HBD group (OH) presented 62% yield and 99% selectivity to product of propylene carbonate in CO2 cycloaddition reaction with propylene oxide even at 40 °C, 2 MPa under metal-absent and solvent-free conditions. For some less active epoxides with steric hindrance, Ar-G-CM/SiO2 also showed good yield and selectivity over 90% by raising temperature to 120 °C. Furthermore, the Ar-G-CM/SiO2 catalyst could be reused for six successive cycles without significant decrease in catalytic activity or structural deterioration, because the carbon deposition was restrained owing to the mesoporous structure of the catalyst.
Collapse
Affiliation(s)
- Yifei Ye
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Lin Liang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xiao Zhang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
8
|
Sun J, Li Z, Li X, Xue M, Yin J. DBU-Based Ionic Liquid Grafted SBA-15 Dual-Functional Catalyst for the Cycloaddition Reaction of CO2 and Epoxide. Catal Letters 2021. [DOI: 10.1007/s10562-021-03840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Ionic Liquids Grafted Mesoporous Silica for Chemical Fixation of CO2 to Cyclic Carbonate: Morphology Effect. Catal Letters 2021. [DOI: 10.1007/s10562-021-03667-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Li Z, Sun J, Xu Q, Yin J. Homogeneous and Heterogeneous Ionic Liquid System: Promising “Ideal Catalysts” for the Fixation of CO
2
into Cyclic Carbonates. ChemCatChem 2021. [DOI: 10.1002/cctc.202001572] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhuo‐Jian Li
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| | - Jian‐Fei Sun
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| | - Qin‐Qin Xu
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| | - Jian‐Zhong Yin
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
11
|
The role of Zn in the sustainable one-pot synthesis of dimethyl carbonate from carbon dioxide, methanol and propylene oxide. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Wang X, Yang L, Chen Y, Yang C, Lan J, Sun J. Metal-Free Triazine-Incorporated Organosilica Framework Catalyst for the Cycloaddition of CO2 to Epoxide under Solvent-Free Conditions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Li Yang
- State Key Lab of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yanglin Chen
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Chaokun Yang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jianwen Lan
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
13
|
Yuan R, He H. Constructing a 3D porous Co(II)-organic framework: Synthesis, characterization and chemical transformation of epoxide and CO2 into cyclic carbonate. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Ye Y, Li D, Xu P, Sun J. B-Doped and NH2-functionalized SBA-15 with hydrogen bond donor groups for effective catalysis of CO2 cycloaddition to epoxides. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00703j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The novel B-SBA-15-NH2 catalyst with Lewis acid–base properties and hydrogen bond donor groups exhibited good catalytic performance for CO2 conversion under metal- and solvent-free conditions.
Collapse
Affiliation(s)
- Yifei Ye
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Dazhi Li
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Ping Xu
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| |
Collapse
|