1
|
Li B, Liu XJ, Zhu HW, Guan HP, Guo RT. A Review on Bi 2WO 6-Based Materials for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406074. [PMID: 39370667 DOI: 10.1002/smll.202406074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/29/2024] [Indexed: 10/08/2024]
Abstract
Photocatalytic reduction of CO2 (PCR) technology offers the capacity to transmute solar energy into chemical energy through an eco-friendly and efficacious process, concurrently facilitating energy storage and carbon diminution, this innovation harbors significant potential for mitigating energy shortages and ameliorating environmental degradation. Bismuth tungstate (Bi2WO6) is distinguished by its robust visible light absorption and distinctive perovskite-type crystal architecture, rendering it highly efficiency in PCR. In recent years, numerous systematic strategies have been investigated for the synthesis and modification of Bi2WO6 to enhance its photocatalytic performance, aiming to achieve superior applications. This review provides a comprehensive review of the latest research progress on Bi2WO6 based materials in the field of photocatalysis. Firstly, outlining the fundamental principles, associated reaction mechanisms and reduction pathways of PCR. Then, the synthesis strategy of Bi2WO6-based materials is introduced for the regulation of its photocatalytic properties. Furthermore, accentuating the extant applications in CO2 reduction, including metal-Bi2WO6, semiconductor-Bi2WO6 and carbon-based Bi2WO6 composites etc. while concludes with an examination of the future landscape and challenges faced. This review hopes to serve as an effective reference for the continuous improvement and implementation of Bi2WO6-based photocatalysts in PCR.
Collapse
Affiliation(s)
- Bo Li
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Xiao-Jing Liu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Hao-Wen Zhu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Hua-Peng Guan
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| |
Collapse
|
2
|
Sun S, Vikrant K, Kim KH, Boukhvalov DW. Titanium dioxide-supported mercury photocatalysts for oxidative removal of hydrogen sulfide from the air using a portable air purification unit. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134089. [PMID: 38579580 DOI: 10.1016/j.jhazmat.2024.134089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
Photocatalytic removal of gaseous hydrogen sulfide (H2S) has been studied through the control of key process variables using a prototype air purifier (AP) fabricated with titanium dioxide (TiO2)-supported mercury. The performance of Hg/TiO2 systems, prepared with different Hg mass proportions over TiO2 (such as 0.1%, 1%, 2%, and 5%), is measured against 5 ppm H2S at 160 L min-1 under UV irradiation. Accordingly, their removal efficiency (RE) values after 360 s are 40.3%, 74.8%, 99.3%, and 99.9%, respectively (relative to 33.5% of AP (TiO2)). An AP with a 2% Hg/TiO2 unit achieves a clean air delivery rate of 32 L min-1 with kinetic reaction rate (r (at 10% RE)) of 0.774 mmol h-1 g-1, quantum yield of 2.19E-02 molecules photon-1, and space-time yield of 1.46E-04 molecules photon-1 mg-1. The superior photocatalytic performance of Hg/TiO2 is supported by superoxide anion and hydroxyl radicals formed in dry air and humid nitrogen (N2) environments, respectively. A density functional theory simulation suggests that the presence of oxygen vacancies should promote the disparities in the electronic structure to subsequently affect the reaction pathways and energetics. The presence of moisture enhances the robust formation of a mercury-OH bond to favorably yield β-mercury sulfide from H2S.
Collapse
Affiliation(s)
- Shaoqing Sun
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, the Republic of Korea
| | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, the Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, the Republic of Korea.
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China; Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Russia
| |
Collapse
|
3
|
Ostovar A, Larimi A, Jiang Z, Lotfi M, Ghotbi C, Khorasheh F. Enhanced visible-light photocatalytic oxidative desulfurization of model fuel over Pt-decorated carbon-doped TiO 2 nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18188-18199. [PMID: 36952170 DOI: 10.1007/s11356-023-26597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Modification of photocatalysts to improve their adsorption and photocatalytic activity in the oxidative desulfurization of liquid fuels has been reported by many investigators. In this study, Pt-decorated carbon-doped TiO2 nanoparticles were synthesized by hydrothermal and photo-deposition techniques and were subsequently used in photocatalytic oxidative desulfurization of dibenzothiophene (DBT) in n-heptane as a simulated liquid fuel with methanol as the extracting solvent. Carbon-doped TiO2 was first synthesized by a simple self-doping method. Pt was then loaded by a photo-deposition technique. The synthesized photocatalysts (labeled as YPt-CT where Y is percent Pt loading) were characterized by of X-ray diffraction (XRD), photoluminescence (PL), field emission scanning electron microscopy (FESEM), N2-physisorption, UV-Vis diffusive reflectance spectra (UV-Vis DRS), transmission electron microscopy (TEM), Fourier transform infrared spectra (FTIR), and nitrogen sorption measurements. The removal efficiency of DBT was 98% in the presence of 2 g/l of 0.5Pt-CT catalyst under visible-light irradiation (λ > 400 nm), ambient pressure, and reaction temperature of 40°C.
Collapse
Affiliation(s)
- Abdollah Ostovar
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Afsanehsadat Larimi
- Department of Chemical and Process Engineering, Niroo Research Institute, Tehran, Iran.
| | - Zhi Jiang
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Marzieh Lotfi
- Department of Chemical Engineering, Jundi-Shapur University of Technology, Dezful, Iran
| | - Cyrus Ghotbi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Farhad Khorasheh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Ahmadi M, Alavi SM, Larimi A. Pt-Cu@Bi 2MoO 6/TiO 2 Photocatalyst for CO 2 Reduction. Inorg Chem 2023. [PMID: 37996778 DOI: 10.1021/acs.inorgchem.3c03372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Bi2MoO6/TiO2 heterojunction photocatalysts were constructed by depositing Bi2MoO6 nanosheets on TiO2 nanobelts' surface using a solvothermal method, and the surface of the optimum Bi2MoO6/TiO2 composite was decorated with copper and/or platinum nanoparticles. The synthesized samples were investigated for the CO2 photocatalytic reduction. The structural and optical properties of synthesized photocatalysts were characterized by XRD, FESEM, EDX, N2-physisorption, Raman, TPD-CO2, DRS, and PL analysis. The Bi2MoO6/TiO2 composite with different molar ratios of Bi2MoO6 to TiO2 (1, 1/2, 1/3, 1/4, 1/5, and 1/6) showed enhanced photocatalytic activity compared to pure Bi2MoO6 and TiO2. In comparison to bulk Bi2MoO6 and TiO2, the formation of a heterojunction between Bi2MoO6 and TiO2 leads to enhanced CO2 adsorption capacity. The enhanced performance of composites can be ascribed to the improved efficiency of light harvesting in the visible light range and suppressing charge recombination. The composite photocatalytic activity indicated that the ratio of Bi2MoO6 to TiO2 in the composite samples influenced the photocatalytic performance. The Bi2MoO6/TiO2 composite with 1/4 molar ratio had the best performance in 8 h (36.4 μmol/gcat), which was about 10 and 3 times higher than TiO2 and Bi2MoO6 photocatalysts, respectively. Under UV-visible light irradiation, the Pt-Cu@BMT4 sample produced the highest amount of methane (83.6 μmol/gcat) during CO2 photoreduction. During four irradiation cycles, the Pt-Cu@BMT4 sample exhibited superior stability with less than 5% decrease in methane production.
Collapse
Affiliation(s)
- Maryam Ahmadi
- Catalyst and Nanomaterials Research Laboratory (CNMRL), School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Seyed Mehdi Alavi
- Catalyst and Nanomaterials Research Laboratory (CNMRL), School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Afsanehsadat Larimi
- Department of Chemical and Process Engineering, Niroo Research Institute, Tehran 14686-13113, Iran
| |
Collapse
|
5
|
Zhai R, Zhang L, Gu M, Zhao X, Zhang B, Cheng Y, Zhang J. A Review of Phosphorus Structures as CO 2 Reduction Photocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207840. [PMID: 36775943 DOI: 10.1002/smll.202207840] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/29/2023] [Indexed: 05/11/2023]
Abstract
Effective photocatalytic carbon dioxide (CO2 ) reduction into high-value-added chemicals is promising to mitigate current energy crisis and global warming issues. Finding effective photocatalysts is crucial for photocatalytic CO2 reduction. Currently, metal-based semiconductors for photocatalytic CO2 reduction have been well reviewed, while review of nonmetal-based semiconductors is almost limited to carbon nitrides. Phosphorus is a promising nonmetal photocatalysts with various allotropes and tunable band gaps, which has been demonstrated to be promising non-metallic photocatalysts. However, no systematic review about phosphorus structures for photocatalytic CO2 reduction reactions has been reported. Herein, the progresses of phosphorus structures as photocatalysts for CO2 reduction are reviewed. The fundamentals of photocatalytic CO2 reduction, corresponding properties of phosphorus allotropes, photocatalysts with phosphorus doping or phosphorus-containing ligands, research progress of phosphorus allotropes as photocatalysts for CO2 reduction have been reviewed in this paper. The future research and perspective of phosphorus structures for photocatalytic CO2 reduction are also presented.
Collapse
Affiliation(s)
- Rui Zhai
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lihui Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mengyue Gu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuewen Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bo Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jinying Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
6
|
Chen S, Hu YH. Color TiO 2 Materials as Emerging Catalysts for Visible-NIR Light Photocatalysis, A Review. CATALYSIS REVIEWS 2023. [DOI: 10.1080/01614940.2023.2169451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shaoqin Chen
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
7
|
Bhatt S, Saini S, Moses Abraham B, Malik A, Jain SL. Heterostructured Ti-MOF/g-C3N4 driven light assisted reductive carboxylation of aryl aldehydes with CO2 under ambient conditions. J Catal 2023. [DOI: 10.1016/j.jcat.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Nautiyal R, Tavar D, Suryavanshi U, Singh G, Singh A, Vinu A, Mane GP. Advanced nanomaterials for highly efficient CO 2 photoreduction and photocatalytic hydrogen evolution. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:866-894. [PMID: 36506822 PMCID: PMC9733696 DOI: 10.1080/14686996.2022.2149036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
At present, CO2 photoreduction to value-added chemicals/fuels and photocatalytic hydrogen generation by water splitting are the most promising reactions to fix two main issues simultaneously, rising CO2 levels and never-lasting energy demand. CO2, a major contributor to greenhouse gases (GHGs) with about 65% of the total emission, is known to cause adverse effects like global temperature change, ocean acidification, greenhouse effects, etc. The idea of CO2 capture and its conversion to hydrocarbons can control the further rise of CO2 levels and help in producing alternative fuels that have several further applications. On the other hand, hydrogen being a zero-emission fuel is considered as a clean and sustainable form of energy that holds great promise for various industrial applications. The current review focuses on the discussion of the recent progress made in designing efficient photocatalytic materials for CO2 photoreduction and hydrogen evolution reaction (HER). The scope of the current study is limited to the TiO2 and non-TiO2 based advanced nanomaterials (i.e. metal chalcogenides, MOFs, carbon nitrides, single-atom catalysts, and low-dimensional nanomaterials). In detail, the influence of important factors that affect the performance of these photocatalysts towards CO2 photoreduction and HER is reviewed. Special attention is also given in this review to provide a brief account of CO2 adsorption modes on the catalyst surface and its subsequent reduction pathways/product selectivity. Finally, the review is concluded with additional outlooks regarding upcoming research on promising nanomaterials and reactor design strategies for increasing the efficiency of the photoreactions.
Collapse
Affiliation(s)
- Rashmi Nautiyal
- Department of Chemistry, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed-to-be) University, Mumbai, India
| | - Deepika Tavar
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Center for Advanced Radiation Shielding and Geopolymeric Material, CSIR– Advanced Material and Processes Research Institute, Bhopal, India
| | - Ulka Suryavanshi
- Rayat Shikshan Sanstha’s, Karmveer Bhaurao Patil College, Vashi, Navi Mumbai, India
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Archana Singh
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Center for Advanced Radiation Shielding and Geopolymeric Material, CSIR– Advanced Material and Processes Research Institute, Bhopal, India
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Gurudas P. Mane
- Department of Chemistry, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed-to-be) University, Mumbai, India
| |
Collapse
|
9
|
Modeling and simulation of photocatalytic CO2 reduction into methanol in a bubble slurry photoreactor. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Mehregan S, Hayati F, Mehregan M, Isari AA, Jonidi Jafari A, Giannakis S, Kakavandi B. Exploring the visible light-assisted conversion of CO 2 into methane and methanol, using direct Z-scheme TiO 2@g-C 3N 4 nanosheets: synthesis and photocatalytic performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74951-74966. [PMID: 35648354 DOI: 10.1007/s11356-022-21048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth of carbon dioxide (CO2) emissions raises concern about the possible consequences of atmospheric CO2 increase, such as global warming and greenhouse effect. Photocatalytic CO2 conversion has attracted researchers' interests to find a sustainable route for its elimination. In the present study, a direct Z-scheme TiO2/g-C3N4 composite (T-GCN) was fabricated via a facile hydrothermal route for the photocatalytic reduction of CO2 into methane (CH4) and methanol (CH3OH), under visible light irradiation without an electron mediator. The microstructure of the as-obtained TiO2/g-C3N4 nanocomposites was fully characterized for its physicochemical, structural, charge separation, electronic, and photo-excited carrier separation properties. The effect of CO2 and H2O partial pressure was studied to find the best operational conditions for obtaining maximum photocatalytic efficiency; the PCO2 and PH2O were 75.8 and 15.5 kPa, respectively, whereas, by increasing the light intensity from 20 to 80 mW/cm2, a remarkable improvement in the reduction rate takes place (from 11.04 to 32.49 μmol.gcat-1.h-1 methane production, respectively). Finally, under the most favorable light, PCO2 and PH2O conditions, high methanol and methane rates were obtained from the CO2 photocatalytic reduction through T-GCN (1.44 μmol.gcat.-1.h-1 and 32.49 μmol.gcat.-1.h-1, respectively) and an integrated proposition for the Z-scheme mechanism of photocatalytic reduction was proposed. This study offers a promising strategy to synthesize a Z-scheme T-GCN heterojunction with high photocatalytic performance for effective CO2 conversion.
Collapse
Affiliation(s)
- Shima Mehregan
- Department of Chemistry, City of Columbia, University of Missouri, Columbia, USA
| | - Farzan Hayati
- Abadan Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Abadan, Iran
| | - Mahya Mehregan
- Department of Chemistry, City of Columbia, University of Missouri, Columbia, USA
| | - Ali Akbar Isari
- Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Rome, Italy
| | - Ahmad Jonidi Jafari
- Department of Environmental Health Engineering, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía Y Medio Ambiente, Unidad Docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, S28040, Madrid, Spain
| | - Babak Kakavandi
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
11
|
Experimental and theoretical studies on the synergistic effect of P and Se co-doped g-C3N4 loaded with Ag nanoparticles as an affective photocatalyst under visible light irradiation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Nguyen TL, Pham TH, Viet NM, Thang PQ, Rajagopal R, Sathya R, Jung SH, Kim T. Improved photodegradation of antibiotics pollutants in wastewaters by advanced oxidation process based on Ni-doped TiO 2. CHEMOSPHERE 2022; 302:134837. [PMID: 35525460 DOI: 10.1016/j.chemosphere.2022.134837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
The number of antibiotic compounds in wastewaters has been growing globally due to the covid-19 problem. Using antibiotics to treat the patients would produce larger amounts of these compounds into the environment with negative impacts. Hence, finding out the method for the elimination of toxic organic pollutants as well as antibiotics in water is urgent (In this study, the treatment of antibiotic pollutants including cefalexin (CF) and tetracycline (TC) was investigated by applying the advanced oxidation process based on Ni-doped TiO2 (Ni-TiO2). The characterizations technologies such as XRD, XPS, UV-vis, PL, and PC indicated that Ni doping would improve the photocatalytic performance of TiO2. In the photodegradation experiments, the Ni-TiO2 possessed high photocatalytic degradation efficiencies with 93.6% for CF and 82.5% for TC. Besides, the removal rates of antibiotics after five cycles are higher than 75%, implying excellent stability of Ni-TiO2 photocatalyst. The result from the treatment of wastewater samples revealed that the Ni-TiO2 photocatalytic had good performance for removal of CF and TC at a high level of 88.6 and 80.2%, respectively.
Collapse
Affiliation(s)
- Thanh Luan Nguyen
- Department of Science and Technology and International Affairs, HUTECH University, 475A Dien Bien Phu Street, Ward 25, Binh Thanh District, Ho Chi Minh City, 700000, Viet Nam.
| | - Thi Huong Pham
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, 13120, South Korea.
| | - Nguyen Minh Viet
- VNU-Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, Viet Nam
| | - Phan Quang Thang
- Institute of Environmental Technology (IET), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rengasamy Sathya
- Department of Microbiology, Centre for Research and Development, PRIST University, Tamil Nadu, 613 403, India
| | - Sung Hoon Jung
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Taeyoung Kim
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, 13120, South Korea.
| |
Collapse
|
13
|
Kouao DS, Grochowska K, Siuzdak K. The Anodization of Thin Titania Layers as a Facile Process towards Semitransparent and Ordered Electrode Material. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1131. [PMID: 35407248 PMCID: PMC9000737 DOI: 10.3390/nano12071131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 01/02/2023]
Abstract
Photoanodes consisting of titania nanotubes (TNTs) grown on transparent conductive oxides (TCO) by anodic oxidation are being widely investigated as a low-cost alternative to silicon-based materials, e.g., in solar light-harvesting applications. Intending to enhance the optical properties of those photoanodes, the modification of the surface chemistry or control of the geometrical characteristics of developed TNTs has been explored. In this review, the recent advancement in light-harvesting properties of transparent anodic TNTs formed onto TCO is summarized. The physical deposition methods such as magnetron sputtering, pulsed laser deposition and electron beam evaporation are the most reported for the deposition of Ti film onto TCO, which are subsequently anodized. A concise description of methods utilized to improve the adhesion of the deposited film and achieve TNT layers without cracks and delamination after the anodization is outlined. Then, the different models describing the formation mechanism of anodic TNTs are discussed with particular focus on the impact of the deposited Ti film thickness on the adhesion of TNTs. Finally, the effects of the modifications of both the surface chemistry and morphological features of materials on their photocatalyst and photovoltaic performances are discussed. For each section, experimental results obtained by different research groups are evoked.
Collapse
Affiliation(s)
- Dujearic-Stephane Kouao
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Science, Fiszera 14 St., 80-231 Gdańsk, Poland; (K.G.); (K.S.)
| | | | | |
Collapse
|
14
|
Sun Y, Feng B, Li Q, Tian C, Ma L, Li Z. The Application of Bi‐Doped TiO
2
for the Photocatalytic Oxidation of Formaldehyde. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202100231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yiran Sun
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Bowen Feng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qianchen Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process East China University of Science and Technology Shanghai 200237 P. R. China
| | - Chengcheng Tian
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process East China University of Science and Technology Shanghai 200237 P. R. China
| | - Liang Ma
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process East China University of Science and Technology Shanghai 200237 P. R. China
| | - Zongzhe Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
15
|
Lertthanaphol N, Prawiset N, Soontornapaluk P, Kitjanukit N, Neamsung W, Pienutsa N, Chusri K, Sornsuchat T, Chanthara P, Phadungbut P, Seeharaj P, Kim-Lohsoontorn P, Srinives S. Soft template-assisted copper-doped sodium dititanate nanosheet/graphene oxide heterostructure for photoreduction of carbon dioxide to liquid fuels. RSC Adv 2022; 12:24362-24373. [PMID: 36128529 PMCID: PMC9415028 DOI: 10.1039/d2ra04283e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Photoreduction of CO2 to a high-value product is an interesting approach that not only captures CO2 but also converts it into other products that can be sold or used in industry. The mechanism for the CO2 conversion relies strongly on photo-generated electrons that further couple with CO2 and form active radicals for the reaction. In this research, we synthesized a heterostructure of copper-doped sodium dititanate nanosheets and graphene oxide (CTGN) following a one-step hydrothermal process with assistance from a sodium hydroxide soft template. The role of the template here is to facilitate the formation of the nanosheets, creating the nanosheet–graphene 2D–2D heterostructure. The heterostructure yields excellent charge mobility and a low charge recombination rate, while the nanosheet–graphene interfaces house active radicals and stabilize intermediates. The CTGN exhibits an outstanding photoactivity in the photoreduction of CO2, producing liquid fuels, including acetone, methanol, ethanol and i-propanol. The copper-doped sodium dititanate nanosheets/graphene oxide heterostructure (CTGN) was synthesized following a one-step hydrothermal process, exhibiting an outstanding photoactivity in converting CO2 to acetone, methanol, ethanol and i-propanol.![]()
Collapse
Affiliation(s)
- Napat Lertthanaphol
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Natthanicha Prawiset
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Pornpinun Soontornapaluk
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Nutkamol Kitjanukit
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Wannisa Neamsung
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Natpichan Pienutsa
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Kittapas Chusri
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Thirawit Sornsuchat
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Prowpatchara Chanthara
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Poomiwat Phadungbut
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Panpailin Seeharaj
- Advanced Materials Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Pattaraporn Kim-Lohsoontorn
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sira Srinives
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| |
Collapse
|
16
|
Abstract
CO2 reutilization processes contribute to the mitigation of CO2 as a potent greenhouse gas (GHG) through reusing and converting it into economically valuable chemical products including methanol, dimethyl ether, and methane. Solar thermochemical conversion and photochemical and electrochemical CO2 reduction processes are emerging technologies in which solar energy is utilized to provide the energy required for the endothermic dissociation of CO2. Owing to the surface-dependent nature of these technologies, their performance is significantly reliant on the solid reactant/catalyst accessible surface area. Solid porous structures either entirely made from the catalyst or used as a support for coating the catalyst/solid reactants can increase the number of active reaction sites and, thus, the kinetics of CO2 reutilization reactions. This paper reviews the principles and application of porous materials for CO2 reutilization pathways in solar thermochemical, photochemical, and electrochemical reduction technologies. Then, the state of the development of each technology is critically reviewed and evaluated with the focus on the use of porous materials. Finally, the research needs and challenges are presented to further advance the implementation of porous materials in the CO2 reutilization processes and the commercialization of the aforementioned technologies.
Collapse
|
17
|
Jalalmanesh S, Kazemeini M, Rahmani MH, Zehtab Salmasi M. Biodiesel Production from Sunflower Oil Using
K
2
CO
3
Impregnated Kaolin Novel Solid Base Catalyst. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shayan Jalalmanesh
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran 11365‐9465 Iran
| | - Mohammad Kazemeini
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran 11365‐9465 Iran
| | - Mohamad H. Rahmani
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran 11365‐9465 Iran
| | - Milad Zehtab Salmasi
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran 11365‐9465 Iran
| |
Collapse
|
18
|
Méndez-Galván M, Alcántar-Vázquez B, Diaz G, Ibarra IA, Lara-García HA. Metal halide perovskites as an emergent catalyst for CO 2 photoreduction: a minireview. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00039j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present minireview summarizes recent advances in the application of metal halide perovskite for CO2 photoreduction.
Collapse
Affiliation(s)
| | - Brenda Alcántar-Vázquez
- Instituto de Ingeniería
- Coordinación de Ingeniería Ambiental
- Universidad Nacional Autónoma de México
- Ciudad de México
- Mexico
| | - Gabriela Diaz
- Instituto de Física
- Universidad Nacional Autónoma de México
- Ciudad de México
- Mexico
| | - Ilich A. Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS)
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Ciudad de México
- Mexico
| | - Hugo A. Lara-García
- Instituto de Física
- Universidad Nacional Autónoma de México
- Ciudad de México
- Mexico
| |
Collapse
|