1
|
Zeng Y, Wang R, Luo Z, Tang Z, Qiu J, Zou C, Li C, Xie G, Wang X. Robust Tertiary Amine Suspended HCIPs for Catalytic Conversion of CO 2 into Cyclic Carbonates under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16950-16962. [PMID: 40062721 DOI: 10.1021/acsami.5c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
A series of tertiary amine suspended hyper-cross-linked ionic polymers (HCIPs), characterized by a rich mesoporous structure, high ionic liquid (IL) density, and good CO2 adsorption capability, were readily prepared via a postsynthetic method. The self-polymerization of 1,3,5-tris(bromomethyl) benzene (TBB) or its copolymerization with 4,4'-bis(bromomethyl) biphenyl (BBP) in varying ratios, followed by grafting with N,N,N',N'-tetramethyl-1,3-propanediamine (TMPDA), yielded the target TMPDA-HCIPs. These HCIPs constitute one of the limited categories of heterogeneous water-tolerant catalyst types ever developed for the cycloaddition reaction between CO2 and epoxides. Specifically, chloropropylene carbonate (CPC) was produced in 99.9% yield with 99% selectivity at 80 °C and 1 bar of CO2 pressure in the presence of 22 mol % water relative to the epoxide substrate. Furthermore, when simulated flue gas served as the CO2 source, the same ratio of water enhanced the CPC yield from 81.9% to 91.5% under 1 MPa pressure, with the selectivity only slightly decreasing from 99% to 94.1%. Additionally, the catalyst could be easily recovered and maintained a high catalytic performance after six cycles. In conclusion, this study presents a robust water-tolerant heterogeneous catalyst for the efficient synthesis of cyclic carbonates from CO2 under mild conditions, potentially reducing the high costs of purifying real flue gas that contains water vapor.
Collapse
Affiliation(s)
- Yanbin Zeng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Rui Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zijun Luo
- School of Materials Science and Engineering, Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, Dongguan University of Technology, Dongguan 523808, China
| | - Zhenzhu Tang
- School of Materials Science and Engineering, Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, Dongguan University of Technology, Dongguan 523808, China
| | - Jiaxiang Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Chao Zou
- Functional Coordination Material Group, Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Chunshan Li
- Institute of Process Engineering, CAS, Beijing 100049, P. R. China
| | - Guanqun Xie
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaoxia Wang
- School of Materials Science and Engineering, Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
2
|
Lin L, Yang H, Li S, Liu Y, Zhi Y, Shan S, Xu J. Synthesis of metal-free benzimidazole-based catalysts and its application in CO 2 cycloaddition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45204-45216. [PMID: 38958860 DOI: 10.1007/s11356-024-34085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Ionic polymers functionalized with hydroxyl, carboxyl, and amino groups can enhance the catalytic activity of catalysts. However, the straightforward preparation of bifunctional ionic polymers containing abundant ionic active sites and hydrogen bond donors remains challenging. In this study, a series of porous ionic polymers (BZIs) containing different hydrogen bond donors (-NH2, -OH, -COOH) were prepared through a simple one-pot Friedel-Crafts alkylation using benzimidazole derivatives and benzyl bromide. The structures and properties of BZIs were characterized by various techniques such as Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, solid-state nuclear magnetic resonance, and scanning electron microscopy. Among the prepared catalysts (BZI-NH2, BZI-OH, and BZI-COOH), BZI-NH2 exhibited the highest catalytic activity and recyclability, achieving a yield of 97% in the CO2 cycloaddition. The synergistic effect of Br-, hydrogen bond donors (-NH-, -NH2), and N+ in BZI-NH2 was found to contribute to its superior catalytic performance. DFT calculations were employed to study the effect of hydrogen bonds, Br-, and N+ in BZI-NH2 and BZI-OH on the CO2 cycloaddition. Using BZI-NH2 as an example, a mechanism was proposed for the synergistic effect between amino groups and bromide ions in catalyzing the CO2 cycloaddition reaction.
Collapse
Affiliation(s)
- Li Lin
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Huigui Yang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Shuangjiang Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Yi Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China.
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Juan Xu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| |
Collapse
|
3
|
Liu Y, Li S, Chen Y, Hu T, Pudukudy M, Shi L, Shan S, Zhi Y. Modified melamine-based porous organic polymers with imidazolium ionic liquids as efficient heterogeneous catalysts for CO 2 cycloaddition. J Colloid Interface Sci 2023; 652:737-748. [PMID: 37500314 DOI: 10.1016/j.jcis.2023.07.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
The chemical conversion of carbon dioxide (CO2) into highly value-added products not only alleviates the environmental issues caused by global warming but also makes an impact on economic benefits in the world. The synthesis of cyclic carbonates by the cycloaddition of CO2 with epoxides is one of the most attractive methods for CO2 conversion. However, the development of green and highly efficient heterogeneous catalysts is considered to be a great challenge in catalysis. In this work, alkenyl-modified melamine-based porous organic polymer (MPOP-4A) was firstly synthesized by a one-pot polycondensation method, and it was again modified with imidazolium-based ionic liquids to obtain final modified catalyst (MPOP-4A-IL). Various analytical techniques were used to confirm structure and chemical composition of the prepared materials. The MPOP-4A-IL catalyst synthesized by the post-modification strategy with imidazolium-based ionic liquids exhibited enhanced catalytic activity for CO2 cycloaddition reaction. The enhanced catalytic performance could be attributed to the presence of abundant active sites in their structure such as hydrogen bond donors (HBD), nitrogen (N) sites, and nucleophilic groups for an effective chemical reaction. The MPOP-4A-IL catalyst was found to be metal-free, easy to recycle and reuse, and has good versatility for a series of different epoxides. The interaction of MPOP-4A-IL catalyst with epoxide and CO2 was further verified by density functional theory (DFT) calculations, and the possible mechanism of the CO2 cycloaddition reaction was proposed.
Collapse
Affiliation(s)
- Yi Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Shuangjiang Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Ying Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Sichuan Vocational College of Chemical Technology, Luzhou, Sichuan 646300, PR China
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Manoj Pudukudy
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Lan Shi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| |
Collapse
|
4
|
Zou Y, Amuti Q, Zou Z, Xu Y, Yan C, Cheng G, Ke H. Diamide-linked imidazolyl Poly(dicationic ionic liquid)s for the conversion of CO 2 to cyclic carbonates under ambient pressure. J Colloid Interface Sci 2023; 656:47-57. [PMID: 37984170 DOI: 10.1016/j.jcis.2023.11.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
The ionic active centers and hydrogen-bond donors (HBDs) in heterogeneous catalytic materials are highly beneficial for enhancing the interaction between solid-liquid-gas three-phase interfaces and promoting effective fixation of carbon dioxide (CO2). Diamide-linked imidazolyl poly(dicationic ionic liquid)s catalysts PIMDILs (PMAIL-x and PBAIL-2) were synthesized through the copolymerization of diamide-linked imidazolyl dicationic ionic liquids (IMDILs) with divinylbenzene (DVB), which successfully enable the simultaneous construction of high-density and uniformly distributed ionic active centers (2.014-4.883 mmol g-1) and hydrogen-bond donors (HBDs). The as-synthesized PIMDILs present excellent catalytic activity in promoting the cycloaddition of CO2 with epoxides. PMAIL-2 could convert epichlorohydrin (ECH) with a quantitative conversion of 99.8 % (selectivity > 99 %) under ambient pressure. Furthermore, only a decrease in activity of 5 % was observed even after six cycles of recycling. The excellent conversions (>97.3 %) were achieved for various terminal substituted epoxides. The experimental and characterization results reveal that the high-density ionic active centers and amide HBDs can effectively activate the reaction substrates, their synergistic effect plays a crucial role at the catalyst interface. This work is expected to provide some useful insights for the rational construction of heterogeneous catalysts for CO2 conversion.
Collapse
Affiliation(s)
- Yizhen Zou
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan). 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430078, China
| | - Qimanguli Amuti
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan). 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430078, China
| | - Zhongwei Zou
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan). 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430078, China
| | - Yuping Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan). 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430078, China
| | - Chong Yan
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan). 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430078, China
| | - Guoe Cheng
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan). 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430078, China
| | - Hanzhong Ke
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan). 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430078, China.
| |
Collapse
|
5
|
Wen Q, Yuan X, Zhou Q, Yang HJ, Jiang Q, Hu J, Guo CY. Solvent-Free Coupling Reaction of Carbon Dioxide and Epoxides Catalyzed by Quaternary Ammonium Functionalized Schiff Base Metal Complexes under Mild Conditions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041646. [PMID: 36837280 PMCID: PMC9961927 DOI: 10.3390/ma16041646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 05/27/2023]
Abstract
A series of bifunctional Schiff base metal catalysts (Zn-NPClR, Zn-NPXH, and M-NPClH) with two quaternary ammonium groups were prepared for carbon dioxide (CO2) and epoxide coupling reactions. The effects of the reaction variables on the catalytic activity were systematically investigated, and the optimal reaction conditions (120 °C, 1 MPa CO2, 3 h) were screened. The performances of different metal-centered catalysts were evaluated, and Co-NPClH showed excellent activity. This kind of bifunctional catalyst has a wide range of substrate applicability, excellent stability, and can be reused for more than five runs. A relatively high TOF could reach up to 1416 h-1 with Zn-NPClH as catalyst by adjusting reaction factors. In addition, the kinetic study of the coupling reaction catalyzed by three catalysts (Zn, Co, and Ni) was carried out to obtain the activation energy (Ea) for the formation of cyclic carbonates. Finally, a possible mechanism for this cyclization reaction was proposed.
Collapse
Affiliation(s)
- Qin Wen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education & Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xuexin Yuan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education & Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Qiqi Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education & Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Hai-Jian Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education & Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Qingqing Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education & Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Juncheng Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education & Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Cun-Yue Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Kessaratikoon T, Theerathanagorn T, Crespy D, D'Elia V. Organocatalytic Polymers from Affordable and Readily Available Building Blocks for the Cycloaddition of CO 2 to Epoxides. J Org Chem 2023; 88:4894-4924. [PMID: 36692489 DOI: 10.1021/acs.joc.2c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The catalytic cycloaddition of CO2 to epoxides to afford cyclic carbonates as useful monomers, intermediates, solvents, and additives is a continuously growing field of investigation as a way to carry out the atom-economic conversion of CO2 to value-added products. Metal-free organocatalytic compounds are attractive systems among various catalysts for such transformations because they are inexpensive, nontoxic, and readily available. Herein, we highlight and discuss key advances in the development of polymer-based organocatalytic materials that match these requirements of affordability and availability by considering their synthetic routes, the monomers, and the supports employed. The discussion is organized according to the number (monofunctional versus bifunctional materials) and type of catalytically active moieties, including both halide-based and halide-free systems. Two general synthetic approaches are identified based on the postsynthetic functionalization of polymeric supports or the copolymerization of monomers bearing catalytically active moieties. After a review of the material syntheses and catalytic activities, the chemical and structural features affecting catalytic performance are discussed. Based on such analysis, some strategies for the future design of affordable and readily available polymer-based organocatalysts with enhanced catalytic activity under mild conditions are considered.
Collapse
Affiliation(s)
- Tanika Kessaratikoon
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Tharinee Theerathanagorn
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Valerio D'Elia
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| |
Collapse
|
7
|
A simple multiple-amine heterogeneous composite for efficient conversion of CO2 to cyclic carbonates under atmospheric pressure. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Construction of stable MOFs integrated with open metal sites and amine groups for CO2 capture and conversion. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
9
|
Chen Y, Li Y, Wang H, Chen Z, Lei YZ. Facile Construction of Carboxyl-Functionalized Ionic Polymer towards Synergistic Catalytic Cycloaddition of Carbon Dioxide into Cyclic Carbonates. Int J Mol Sci 2022; 23:ijms231810879. [PMID: 36142788 PMCID: PMC9506212 DOI: 10.3390/ijms231810879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
The development of bifunctional ionic polymers as heterogeneous catalysts for effective, cocatalyst- and metal-free cycloaddition of carbon dioxide into cyclic carbonates has attracted increasing attention. However, facile fabrication of such polymers having high numbers of ionic active sites, suitable types of hydrogen bond donors (HBDs), and controlled spatial positions of dual active sites remains a challenging task. Herein, imidazolium-based ionic polymers with hydroxyl/carboxyl groups and high ionic density were facilely prepared by a one-pot quaternization reaction. Catalytic evaluation demonstrated that the presence of HBDs (hydroxyl or carboxyl) could enhance the catalytic activities of ionic polymers significantly toward the CO2 cycloaddition reaction. Among the prepared catalysts, carboxyl-functionalized ionic polymer (PIMBr-COOH) displayed the highest catalytic activity (94% yield) in the benchmark cycloaddition reaction of CO2 and epichlorohydrin, which was higher than hydroxyl-functionalized ionic polymer (PIMBr-OH, 76% yield), and far exceeded ionic polymer without HBDs groups (PIMBr, 54% yield). Furthermore, PIMBr-COOH demonstrated good recyclability and wide substrate tolerance. Under ambient CO2 pressure, a number of epoxides were smoothly cycloadded into cyclic carbonates. Additionally, density functional theory (DFT) calculation verified the formation of strong hydrogen bonds between epoxide and the HBDs of ionic polymers. Furthermore, a possible mechanism was proposed based on the synergistic effect between carboxyl and Br− functionalities. Thus, a facile, one-pot synthetic strategy for the construction of bifunctional ionic polymers was developed for CO2 fixation.
Collapse
Affiliation(s)
- Ying Chen
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Yingjun Li
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Hu Wang
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Zaifei Chen
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Yi-Zhu Lei
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
- Correspondence:
| |
Collapse
|
10
|
Jiang B, Liu J, Yang G, Zhang Z. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free Poly (ionic liquid)s. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Hypercrosslinked Ionic Polymers with High Ionic Content for Efficient Conversion of Carbon Dioxide into Cyclic Carbonates. Catalysts 2022. [DOI: 10.3390/catal12010062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The effective conversion of carbon dioxide (CO2) into cyclic carbonates requires porous materials with high ionic content and large specific surface area. Herein, we developed a new systematic post-synthetic modification strategy for synthesizing imidazolium-based hypercrosslinked ionic polymers (HIPs) with high ionic content (up to 2.1 mmol g−1) and large specific surface area (385 m2 g−1) from porous hypercrosslinked polymers (HCPs) through addition reaction and quaternization. The obtained HIPs were efficient in CO2 capture and conversion. Under the synergistic effect of high ionic content, large specific surface area, and plentiful micro/mesoporosity, the metal-free catalyst [HCP-CH2-Im][Cl]-1 exhibited quantitative selectivities, high catalytic yields, and good substrate compatibility for the conversion of CO2 into cyclic carbonates at atmospheric pressure (0.1 MPa) in a shorter reaction time in the absence of cocatalysts, solvents, and additives. High catalytic yields (styrene oxide, 120 °C, 8 h, 94% yield; 100 °C, 20 h, 93% yield) can be achieved by appropriately extending the reaction times at low temperature, and the reaction times are shorter than other porous materials under the same conditions. This work provides a new strategy for synthesizing an efficient metal-free heterogeneous catalyst with high ionic content and a large specific surface area from HCPs for the conversion of CO2 into cyclic carbonates. It also demonstrates that the ionic content and specific surface area must be coordinated to obtain high catalytic activity for CO2 cycloaddition reaction.
Collapse
|
12
|
Wan YL, Zhang Z, Ding C, Wen L. Facile construction of bifunctional porous ionic polymers for efficient and metal-free catalytic conversion of CO2 into cyclic carbonates. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Cai K, Liu P, Chen P, Yang C, Liu F, Xie T, Zhao T. Imidazolium- and triazine-based ionic polymers as recyclable catalysts for efficient fixation of CO2 into cyclic carbonates. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Abd AA, Othman MR, Kim J. A review on application of activated carbons for carbon dioxide capture: present performance, preparation, and surface modification for further improvement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43329-43364. [PMID: 34189695 DOI: 10.1007/s11356-021-15121-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The atmosphere security and regulation of climate change are being continuously highlighted as a pressing issue. The crisis of climate change owing to the anthropogenic carbon dioxide emission has led many governments at federal and provincial levels to promulgate policies to address this concern. Among them is regulating the carbon dioxide emission from major industrial sources such as power plants, petrochemical industries, cement plants, and other industries that depend on the combustion of fossil fuels for energy to operate. In view of this, various CO2 capture and sequestration technologies have been investigated and presented. From this review, adsorption of CO2 on porous solid materials has been gaining increasing attention due to its cost-effectiveness, ease of application, and comparably low energy demand. Despite the myriad of advanced materials such as zeolites, carbons-based, metal-organic frameworks, mesoporous silicas, and polymers being researched, research on activated carbons (ACs) continue to be in the mainstream. Therefore, this review is endeavored to elucidate the adsorption properties of CO2 on activated carbons derived from different sources. Selective adsorption based on pore size/shape and surface chemistry is investigated. Accordingly, the effect of surface modifications of the ACs with NH3, amines, and metal oxides on adsorption performance toward CO2 is evaluated. The adsorption performance of the activated carbons under humid conditions is also reviewed. Finally, activated carbon-based composite has been surveyed and recommended as a feasible strategy to improve AC adsorption properties toward CO2. The activated carbon surface in the graphical abstract is nitrogen rich modified using ammonia through thermal treatment. The values of CO2 emissions by sources are taken from (Yoro and Daramola 2020).
Collapse
Affiliation(s)
- Ammar Ali Abd
- Chemical Engineering Department, Curtin University, Perth, Australia.
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
- Water Resources Engineering College, Al-Qasim Green University, Babylon, Iraq.
| | - Mohd Roslee Othman
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Jinsoo Kim
- Department of Chemical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Korea
| |
Collapse
|
15
|
Jamil R, Tomé LC, Mecerreyes D, Silvester DS. Emerging Ionic Polymers for CO2 Conversion to Cyclic Carbonates: An Overview of Recent Developments. Aust J Chem 2021. [DOI: 10.1071/ch21182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this mini review, we highlight some key work from the last 2 years where ionic polymers have been used as a catalyst to convert CO2 into cyclic carbonates. Emerging ionic polymers reported for this catalytic application include materials such as poly(ionic liquid)s (PILs), ionic porous organic polymers (iPOPs) or ionic covalent organic frameworks (iCOFs) among others. All these organic materials share in common the ionic moiety cations such as imidazolium, pyridinium, viologen, ammonium, phosphonium, and guanidinium, and anions such as halides, [BF4]–, [PF6]–, and [Tf2N]–. The mechanistic aspects and efficiency of the CO2 conversion reaction and the polymer design including functional groups and porosity are discussed in detail. This review should provide valuable information for researchers to design new polymers for important catalysis applications.
Collapse
|