1
|
Conlin SK, Muhanga JJ, Parette DN, Coridan RH. Characterizing the stability of ultra-thin metal oxide catalyst films in non-thermal plasma CO 2 reduction reactions. NANOSCALE ADVANCES 2025; 7:876-885. [PMID: 39720123 PMCID: PMC11664254 DOI: 10.1039/d4na00854e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024]
Abstract
The use of metal oxide catalysts to enhance plasma CO2 reduction has seen significant recent development towards processes to reduce greenhouse gas emissions and produce renewable chemical feedstocks. While plasma reactors are effective at producing the intended chemical transformations, the conditions can result in catalyst degradation. Atomic layer deposition (ALD) can be used to synthesize complex, hierarchically structured metal oxide plasma catalysts that, while active for plasma CO2 reduction, are potentially vulnerable to degradation due to their high surface area and nanoscopic thickness. In this work, we characterized the effects of extended non-thermal, glow discharge plasma exposure on ALD synthesized, ultra-thin film (<30 nm) TiO2 and ZnO catalysts. We used X-ray diffraction, reflectivity, and spectroscopy to compare films exposed to a CO2 plasma to ones exposed to an Ar plasma and to ones annealed in air. We found that the CO2 plasma exposure generated some surface reduction in TiO2 and increased surface roughening by a small amount, but did not initiate any phase changes or crystallite growth. The results suggest that ALD-deposited metal oxide films are robust to low pressure CO2 plasma exposure and are suitable as catalysts or catalyst supports in extended reactions.
Collapse
Affiliation(s)
- Samuel K Conlin
- Department of Chemistry and Biochemistry, University of Arkansas Fayetteville AR 72701 USA
| | - Joseph Joel Muhanga
- Materials Science and Engineering Program, University of Arkansas Fayetteville AR 72701 USA
| | - David N Parette
- Department of Chemistry and Biochemistry, University of Arkansas Fayetteville AR 72701 USA
| | - Robert H Coridan
- Department of Chemistry and Biochemistry, University of Arkansas Fayetteville AR 72701 USA
- Materials Science and Engineering Program, University of Arkansas Fayetteville AR 72701 USA
| |
Collapse
|
2
|
Luo Y, Yue X, Zhang H, Liu X, Wu Z. Recent advances in energy efficiency optimization methods for plasma CO 2 conversion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167486. [PMID: 37788772 DOI: 10.1016/j.scitotenv.2023.167486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Efforts to develop efficient methods for converting carbon dioxide (CO2) have drawn mounting interest due to incremental concerns over carbon emissions. Non-thermal plasma (NTP) technology has shown promise in this regard by producing numerous reactive substances at relatively low temperatures. However, an analysis of relevant literature reveals an underwhelming level of overall energy efficiency for this technology and an insufficient level of attention being paid to it. It is crucial to put forward more effective energy-saving schemes based on a comprehensive analysis of past research results to promote sustained development. This review highlights the latest advances in pertinent energy efficiency optimization studies and outlines state-of-the-art methods. In terms of energy efficiency optimization for plasma CO2 conversion, a comparison is made among different research results in four aspects as follows. Specifically, this study analyzes reactor structure optimization in terms of discharge characteristic, flow field, and plasma contact area; discusses pathways of heat transfer optimization to suppress the competing reaction; and explores catalyst optimization in terms of active sites, calcination temperature, and product selectivity; examines the potential of utilizing solar energy for clean energy applications. The analysis of energy efficiency data indicates an overall improvement when the aforementioned optimization measures are applied, which is essential to validate the effectiveness of each method. Finally, this paper discusses the potential difficulties and future research areas of NTP technology. Urgent further research is imperative on energy efficiency optimization methods for potential large-scale industrial applications in the future.
Collapse
Affiliation(s)
- Yang Luo
- School of Civil Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xiaofeng Yue
- School of Civil Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Hongli Zhang
- School of Civil Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xiaoping Liu
- School of Civil Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Institute of Building Carbon Neutrality, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
3
|
Plasma-coupled catalysis in VOCs removal and CO2 conversion: Efficiency enhancement and synergistic mechanism. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Renninger S, Stein J, Lambarth M, Birke KP. An optimized reactor for CO2 splitting in DC atmospheric pressure discharge. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Huang Q, Liang Z, Qi F, Zhang N, Yang J, Liu J, Tian C, Fu C, Tang X, Wu D, Wang J, Wang X, Chen W. Carbon Dioxide Conversion Synergistically Activated by Dielectric Barrier Discharge Plasma and the CsPbBr 3@TiO 2 Photocatalyst. J Phys Chem Lett 2022; 13:2418-2427. [PMID: 35257573 DOI: 10.1021/acs.jpclett.2c00253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon dioxide utilization activated by the integration of plasma and photocatalyst is a promising approach to achieve the mitigation of the greenhouse effect. In this paper, for the first time, the dielectric barrier discharge (DBD) plasma and halide perovskite photocatalysts were synergistically used to facilitate the carbon dioxide conversion. After introducing the photocatalyst into the plasma reactor, the plasma discharge characteristics were improved by the photocatalyst while the active photons, electrons, and vibrationally excited molecules in plasma also enhanced the photocatalytic activity of the photocatalyst. Compared with pure CsPbBr3 and Al2O3, the CsPbBr3@TiO2 with the best photocatalytic activity also exhibited the best performance in plasma. The carbon dioxide conversion rate of the DBD plasma filled with CsPbBr3@TiO2 was found to be 29.6% higher than the sum of sole plasma and photocatalysis, illustrating the achievement of the synergistic effect between the plasma and photocatalyst. This work brings up new opportunities for efficient large-scale conversion and utilization of carbon dioxide by the coupling of nonthermal plasma and photocatalysis.
Collapse
Affiliation(s)
- Qiang Huang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhiyu Liang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Fei Qi
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Nan Zhang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Jiayu Yang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Jiaxin Liu
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Changqing Tian
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Chengfan Fu
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xiaosheng Tang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Daofu Wu
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Jimei Wang
- State Key Laboratory of Green Building Materials, Beijing 100024, China
| | - Xiaoyan Wang
- State Key Laboratory of Green Building Materials, Beijing 100024, China
| | - Weiwei Chen
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
6
|
Klemm E, Lobo CMS, Löwe A, Schallhart V, Renninger S, Waltersmann L, Costa R, Schulz A, Dietrich R, Möltner L, Meynen V, Sauer A, Friedrich KA. CHEMampere
: Technologies for sustainable chemical production with renewable electricity and
CO
2
,
N
2
,
O
2
, and
H
2
O
. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Elias Klemm
- University of Stuttgart, Institute of Technical Chemistry Stuttgart Germany
| | - Carlos M. S. Lobo
- University of Stuttgart, Institute of Technical Chemistry Stuttgart Germany
| | - Armin Löwe
- University of Stuttgart, Institute of Technical Chemistry Stuttgart Germany
| | | | - Stephan Renninger
- University of Stuttgart, Institute for Photovoltaics Stuttgart Germany
| | - Lara Waltersmann
- Fraunhofer‐Institute for Manufacturing Engineering and Automation 70569 Stuttgart Germany
| | - Rémi Costa
- German Aerospace Center Institute of Engineering Thermodynamics Stuttgart Germany
| | - Andreas Schulz
- University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology Stuttgart Germany
| | - Ralph‐Uwe Dietrich
- German Aerospace Center Institute of Engineering Thermodynamics Stuttgart Germany
| | | | - Vera Meynen
- University of Antwerp, Laboratory of Adsorption and Catalysis, Department of Chemistry Wilrijk Belgium
| | - Alexander Sauer
- Fraunhofer‐Institute for Manufacturing Engineering and Automation 70569 Stuttgart Germany
- University of Stuttgart, Institute for Energy Efficiency in Production Stuttgart Germany
| | - K. Andreas Friedrich
- German Aerospace Center Institute of Engineering Thermodynamics Stuttgart Germany
- University of Stuttgart, Institute of Building Energetics, Thermal Engineering and Energy Storage Stuttgart Germany
| |
Collapse
|