1
|
Banasik A, Wrzosek M, Drobot P, Owsińska-Schmidt K, Brewińska L, Zimny A, Podgórski P. Correlation between semiautomated magnetic resonance imaging volumetry of the cingulate gyrus and interictal epileptiform discharge lateralization in dogs with idiopathic epilepsy. J Vet Intern Med 2024; 38:2590-2602. [PMID: 39189832 PMCID: PMC11423450 DOI: 10.1111/jvim.17178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Brain imaging suggests the involvement of the limbic system, particularly the cingulate gyrus (GC), in dogs with idiopathic epilepsy (IE). HYPOTHESIS A correlation exists between the side of interictal epileptiform discharges (IEDs) and the volume of the ipsilateral GC (GCe) in dogs with IE. ANIMALS Dogs admitted to the neurological consultation (32 with epileptic seizures and 13 control) were included. METHODS This retrospective, blinded study followed the International Veterinary Epilepsy Task Force recommendations for diagnosing IE at the Tier III confidence level. The IE group included 18 and 14 dogs with IEDs in the left and right hemispheres, respectively (median age: 36 months, median weight: 19.5 kg), whereas the control group included 13 dogs (median age: 32 months, median weight: 20 kg). Whole-brain and GC-volumetric assessments were performed by a semiautomated method. RESULTS In the control group, the volume of the GC was: left, from 743.63 to 1001.61 mm3, right, from 789.35 to 1015.86 mm3. In the study group, the volume of the GC was: left, from 720.88 to 1054.9 mm3 and right, from 566.29 to 987.77 mm3. In dogs with IE, GCe volume was significantly lower than the mean volume of the GC in the control group relative to total intracranial volume (TIV; P = .00044). CONCLUSIONS AND CLINICAL IMPORTANCE Alterations in the volume of the GC provide insights into structural changes during IE. The use of semiautomatic volumetry provides an advantage by reducing the potential for human error.
Collapse
Affiliation(s)
- Aleksandra Banasik
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marcin Wrzosek
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- NeuroTeam Specialist Veterinary Clinic, Wrocław, Poland
| | - Paulina Drobot
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Karolina Owsińska-Schmidt
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Laura Brewińska
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Anna Zimny
- Department of General and Interventional Radiology and Neuroradiology, Wrocław Medical University, Wrocław, Poland
| | - Przemysław Podgórski
- Department of General and Interventional Radiology and Neuroradiology, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
2
|
Charalambous M, Fischer A, Potschka H, Walker MC, Raedt R, Vonck K, Boon P, Lohi H, Löscher W, Worrell G, Leeb T, McEvoy A, Striano P, Kluger G, Galanopoulou AS, Volk HA, Bhatti SFM. Translational veterinary epilepsy: A win-win situation for human and veterinary neurology. Vet J 2023; 293:105956. [PMID: 36791876 DOI: 10.1016/j.tvjl.2023.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Epilepsy is a challenging multifactorial disorder with a complex genetic background. Our current understanding of the pathophysiology and treatment of epilepsy has substantially increased due to animal model studies, including canine studies, but additional basic and clinical research is required. Drug-resistant epilepsy is an important problem in both dogs and humans, since seizure freedom is not achieved with the available antiseizure medications. The evaluation and exploration of pharmacological and particularly non-pharmacological therapeutic options need to remain a priority in epilepsy research. Combined efforts and sharing knowledge and expertise between human medical and veterinary neurologists are important for improving the treatment outcomes or even curing epilepsy in dogs. Such interactions could offer an exciting approach to translate the knowledge gained from people and rodents to dogs and vice versa. In this article, a panel of experts discusses the similarities and knowledge gaps in human and animal epileptology, with the aim of establishing a common framework and the basis for future translational epilepsy research.
Collapse
Affiliation(s)
- Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| | - Andrea Fischer
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich 80539, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich 80539, Germany
| | - Matthew C Walker
- Institute of Neurology, University College London, London WC1N 3JD, UK
| | - Robrecht Raedt
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Kristl Vonck
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Paul Boon
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Hannes Lohi
- Department of Veterinary Biosciences, Department of Medical and Clinical Genetics, and Folkhälsan Research Center, University of Helsinki, Helsinki 00014, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | | | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern 3001, Switzerland
| | - Andrew McEvoy
- Institute of Neurology, University College London, London WC1N 3JD, UK
| | - Pasquale Striano
- IRCCS 'G. Gaslini', Genova 16147, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Gerhard Kluger
- Research Institute, Rehabilitation, Transition-Palliation', PMU Salzburg, Salzburg 5020, Austria; Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schoen Clinic Vogtareuth, Vogtareuth 83569, Germany
| | - Aristea S Galanopoulou
- Saul R Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Sofie F M Bhatti
- Faculty of Veterinary Medicine, Small Animal Department, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
3
|
Cocchetto A, Gallucci A, Biggio F, Cantile C. Malformation of the Cortical Development Associated with Severe Clusters of Epileptic Seizures. Vet Sci 2022; 10:vetsci10010007. [PMID: 36669007 PMCID: PMC9865598 DOI: 10.3390/vetsci10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Three cases of the malformation of the cortical development are described: a mixed breed dog and a Border Collie pup with a focal and diffuse cortical dysplasia, respectively, and a kitten with lissencephaly. All cases presented with intractable epilepsy and were euthanized, due to the cluster of epileptic seizures. The gross examination at necropsy revealed the morphologic alteration of the telencephalic region in two cases. Histopathologically, a disorganization of the cortical lamination with the presence of megalic neurons, was found in the focal cortical dysplasia case. An altered organization of the white and gray matter, with a loss of the normal neuronal distribution and altered neurons, characterized the diffuse cortical dysplasia case. In the lissencephalic cat, there was no recognizable organization of the brain with areas of neuroglial tissue forming nodules in the leptomeningeal space. We strongly support the hypothesis that, as in humans, as well as in the veterinary patients, malformations of the cortical development could be the cause of refractory epilepsy.
Collapse
Affiliation(s)
- Aurora Cocchetto
- San Marco Veterinary Clinic and Laboratory, Neurology and Neurosurgery Division, 35030 Veggiano, Italy
- Correspondence:
| | | | - Federica Biggio
- Veterinary Neurological Centre “La Fenice”, 09047 Selargius, Italy
| | - Carlo Cantile
- Department of Veterinary Sciences, University of Pisa (PI), 56126 Pisa, Italy
| |
Collapse
|
4
|
Herkommer LF, Henrich M, Herden C, Schmidt MJ. Periventricular nodular heterotopia in a Chihuahua. J Vet Intern Med 2020; 34:1570-1575. [PMID: 32445227 PMCID: PMC7379017 DOI: 10.1111/jvim.15803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022] Open
Abstract
Periventricular nodular heterotopia is a common neuronal malformation in humans, often leading to epilepsy and other neurologic diseases. A 2‐month‐old female Chihuahua weighing 750 g was examined because of a history of epileptic seizures and abnormalities in gait and behavior. Results of the clinical examination were consistent with a multifocal neurologic disease with localization in the forebrain and spinovestibular system. The magnetic resonance imaging showed multiple bilateral periventricular nodules isointense to gray matter and ventriculomegaly. Histopathological and immunohistological examination of the brain revealed that periventricular nodules consisted of neurons, fewer astrocytes, and some oligodendroglia consistent with periventricular nodular heterotopias.
Collapse
Affiliation(s)
- Leonie F Herkommer
- Institute for Veterinary-Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Manfred Henrich
- Institute for Veterinary-Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christiane Herden
- Institute for Veterinary-Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Martin J Schmidt
- Department of Veterinary Clinical Sciences, Small Animal Clinic, Neurosurgery, Neuroradiology and Clinical Neurology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
6
|
Rusbridge C, Long S, Jovanovik J, Milne M, Berendt M, Bhatti SFM, De Risio L, Farqhuar RG, Fischer A, Matiasek K, Muñana K, Patterson EE, Pakozdy A, Penderis J, Platt S, Podell M, Potschka H, Stein VM, Tipold A, Volk HA. International Veterinary Epilepsy Task Force recommendations for a veterinary epilepsy-specific MRI protocol. BMC Vet Res 2015; 11:194. [PMID: 26319136 PMCID: PMC4594743 DOI: 10.1186/s12917-015-0466-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is one of the most common chronic neurological diseases in veterinary practice. Magnetic resonance imaging (MRI) is regarded as an important diagnostic test to reach the diagnosis of idiopathic epilepsy. However, given that the diagnosis requires the exclusion of other differentials for seizures, the parameters for MRI examination should allow the detection of subtle lesions which may not be obvious with existing techniques. In addition, there are several differentials for idiopathic epilepsy in humans, for example some focal cortical dysplasias, which may only apparent with special sequences, imaging planes and/or particular techniques used in performing the MRI scan. As a result, there is a need to standardize MRI examination in veterinary patients with techniques that reliably diagnose subtle lesions, identify post-seizure changes, and which will allow for future identification of underlying causes of seizures not yet apparent in the veterinary literature. There is a need for a standardized veterinary epilepsy-specific MRI protocol which will facilitate more detailed examination of areas susceptible to generating and perpetuating seizures, is cost efficient, simple to perform and can be adapted for both low and high field scanners. Standardisation of imaging will improve clinical communication and uniformity of case definition between research studies. A 6–7 sequence epilepsy-specific MRI protocol for veterinary patients is proposed and further advanced MR and functional imaging is reviewed.
Collapse
Affiliation(s)
- Clare Rusbridge
- Fitzpatrick Referrals, Halfway Lane, Eashing, Godalming, GU7 2QQ, Surrey, UK. .,School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, GU2 7TE, Surrey, UK.
| | - Sam Long
- University of Melbourne, 250 Princes Highway, Weibee, 3015, VIC, Australia.
| | - Jelena Jovanovik
- Fitzpatrick Referrals, Halfway Lane, Eashing, Godalming, GU7 2QQ, Surrey, UK.
| | - Marjorie Milne
- University of Melbourne, 250 Princes Highway, Weibee, 3015, VIC, Australia.
| | - Mette Berendt
- Department of Veterinary and Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Sofie F M Bhatti
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium.
| | - Luisa De Risio
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, CB8 7UU, Suffolk, UK.
| | - Robyn G Farqhuar
- Fernside Veterinary Centre, 205 Shenley Road, Borehamwood, SG9 0TH, Hertfordshire, UK.
| | - Andrea Fischer
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539, Munich, Germany.
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539, Munich, Germany.
| | - Karen Muñana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1052 William Moore Drive, Raleigh, NC, 27607, USA.
| | - Edward E Patterson
- University of Minnesota College of Veterinary Medicine, D426 Veterinary Medical Center, 1352 Boyd Avenue, St. Paul, MN, 55108, USA.
| | - Akos Pakozdy
- Clinical Unit of Internal Medicine Small Animals, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Jacques Penderis
- Vet Extra Neurology, Broadleys Veterinary Hospital, Craig Leith Road, Stirling, FK7 7LE, Stirlingshire, UK.
| | - Simon Platt
- College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA.
| | - Michael Podell
- Chicago Veterinary Neurology and Neurosurgery, 3123 N. Clybourn Avenue, Chicago, IL, 60618, USA.
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximillians-University, Königinstr. 16, 80539, Munich, Germany.
| | - Veronika M Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | - Holger A Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL9 7TA, Hertfordshire, UK.
| |
Collapse
|