1
|
Feng Y, Liu M, Wang Z, Zhao X, Han B, Xing Y, Wang M, Yang Y. A 4-bp deletion in the 5'UTR of TaAFP-B is associated with seed dormancy in common wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2019; 19:349. [PMID: 31399044 PMCID: PMC6688260 DOI: 10.1186/s12870-019-1950-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/29/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND AFP is a negative regulator of ABA signaling that promotes ABI5 protein degradation and weakens regulation of ABA signaling by targeting upstream genes of ABI5, and TaABI5 gene was seed-specific, and accumulated during wheat grain maturation and dormancy acquisition, which played an important role in seed dormancy; TaAFP has a conserved domain with AFP, so TaAFP may also play an important role in seed dormancy in wheat. RESULTS Two allelic variants of TaAFP were identified on chromosome 2BS in common wheat, and designated as TaAFP-B1a and TaAFP-B1b. Sequence analysis showed a 4-bp deletion in the 5'UTR region of TaAFP-B1b compared with TaAFP-B1a. Based on the 4-bp deletion, a co-dominant functional marker of TaAFP-B was developed and designated as AFPB. The genotype generating a 203-bp fragment (TaAFP-B1b) was more resistant to pre-harvest sprouting than the genotype producing a 207-bp fragment (TaAFP-B1a) in a test of 91 white-grained Chinese wheat cultivars and advanced lines. The average germination index(GI) values of TaAFP-B1a and that of TaAFP-B1b were 45.18 and 30.72%, respectively, indicating a significant difference (P < 0.001). Moreover, the 4-bp deletion located in the 5'UTR not only affected the transcription level of TaAFP-B but also affected the mRNA decay, reduced the translation level of GUS and tdTomatoER and GUS activity in wheat leaves of transient expression. The transcript expression and the mRNA half-life value of TaAFP-B1a in developing seeds and mature seeds were much higher than those of TaAFP-B1b. CONCLUSION We identified a 4-bp InDel in the 5'UTR of TaAFP-B, which affected the mRNA transcription level, mRNA decay, translation levels of GUS and tdTomatoER, GUS activity, and was significantly associated with seed dormancy in common wheat. A functional marker was developed and validated based on this InDel.
Collapse
Affiliation(s)
- Yumei Feng
- College of Life Sciences, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Erdos Road, Hohhot, 010018 Inner Mongolia China
| | - Meng Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Erdos Road, Hohhot, 010018 Inner Mongolia China
| | - Zeng Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Erdos Road, Hohhot, 010018 Inner Mongolia China
| | - Xianlin Zhao
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Wheat Biology, National Engineering Laboratory for Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-Huai Region, Ministry of Agriculture, Zhengzhou, 450002 China
| | - Bing Han
- College of Life Sciences, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Erdos Road, Hohhot, 010018 Inner Mongolia China
| | - Yanping Xing
- College of Life Sciences, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Erdos Road, Hohhot, 010018 Inner Mongolia China
| | - Maoyan Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Erdos Road, Hohhot, 010018 Inner Mongolia China
| | - Yan Yang
- College of Life Sciences, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Erdos Road, Hohhot, 010018 Inner Mongolia China
| |
Collapse
|
2
|
Holappa LD, Ronald PC, Kramer EM. Evolutionary Analysis of Snf1-Related Protein Kinase2 (SnRK2) and Calcium Sensor (SCS) Gene Lineages, and Dimerization of Rice Homologs, Suggest Deep Biochemical Conservation across Angiosperms. FRONTIERS IN PLANT SCIENCE 2017; 8:395. [PMID: 28424709 PMCID: PMC5381359 DOI: 10.3389/fpls.2017.00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/08/2017] [Indexed: 05/14/2023]
Abstract
Members of the sucrose non-fermenting related kinase Group2 (SnRK2) subclasses are implicated in both direct and indirect abscisic acid (ABA) response pathways. We have used phylogenetic, biochemical, and transient in vivo approaches to examine interactions between Triticum tauschii protein kinase 1 (TtPK1) and an interacting protein, Oryza sativa SnRK2-calcium sensor (OsSCS1). Given that TtPK1 has 100% identity with its rice ortholog, osmotic stress/ABA-activated protein kinase (OsSAPK2), we hypothesized that the SCS and TtPK1 interactions are present in both wheat and rice. Here, we show that SnRK2s are clearly divided into four pan-angiosperm clades with those in the traditionally defined Subclass II encompassing two distinct clades (OsSAPK1/2 and OsSAPK3), although OsSAPK3 lacks an Arabidopsis ortholog. We also show that SCSs are distinct from a second lineage, that we term SCSsister, and while both clades pre-date land plants, the SCSsister clade lacks Poales representatives. Our Y2H assays revealed that the removal of the OsSCS1 C-terminal region along with its N-terminal EF-hand abolished its interaction with the kinase. Using transient in planta bimolecular fluorescence complementation experiments, we demonstrate that TtPK1/OsSCS1 dimerization co-localizes with DAPI-stained nuclei and with FM4-64-stained membranes. Finally, OsSCS1- and OsSAPK2-hybridizing transcripts co-accumulate in shoots/coleoptile of drying seedlings, consistent with up-regulated kinase transcripts of PKABA1 and TtPK1. Our studies suggest that interactions between homologs of the SnRK2 and SCS lineages are broadly conserved across angiosperms and offer new directions for investigations of related proteins.
Collapse
Affiliation(s)
- Lynn D. Holappa
- Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, USA
- Plant Pathology and the Genome Center, University of California DavisDavis, CA, USA
- *Correspondence: Lynn D. Holappa
| | - Pamela C. Ronald
- Plant Pathology and the Genome Center, University of California DavisDavis, CA, USA
| | - Elena M. Kramer
- Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, USA
| |
Collapse
|
3
|
Yang L, Ji W, Gao P, Li Y, Cai H, Bai X, Chen Q, Zhu Y. GsAPK, an ABA-activated and calcium-independent SnRK2-type kinase from G. soja, mediates the regulation of plant tolerance to salinity and ABA stress. PLoS One 2012; 7:e33838. [PMID: 22439004 PMCID: PMC3306294 DOI: 10.1371/journal.pone.0033838] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 02/17/2012] [Indexed: 11/19/2022] Open
Abstract
Plant Snf1 (sucrose non-fermenting-1) related protein kinase (SnRK), a subfamily of serine/threonine kinases, has been implicated as a crucial upstream regulator of ABA and osmotic signaling as in many other signaling cascades. In this paper, we have isolated a novel plant specific ABA activated calcium independent protein kinase (GsAPK) from a highly salt tolerant plant, Glycine soja (50109), which is a member of the SnRK2 family. Subcellular localization studies using GFP fusion protein indicated that GsAPK is localized in the plasma membrane. We found that autophosphorylation and Myelin Basis Protein phosphorylation activity of GsAPK is only activated by ABA and the kinase activity also was observed when calcium was replaced by EGTA, suggesting its independence of calcium in enzyme activity. We also found that cold, salinity, drought, and ABA stress alter GsAPK gene transcripts and heterogonous overexpression of GsAPK in Arabidopsis alters plant tolerance to high salinity and ABA stress. In summary, we demonstrated that GsAPK is a Glycine soja ABA activated calcium independent SnRK-type kinase presumably involved in ABA mediated stress signal transduction.
Collapse
Affiliation(s)
- Liang Yang
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, Heilongjiang, China
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
| | - Wei Ji
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Peng Gao
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yong Li
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hua Cai
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xi Bai
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qin Chen
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - Yanming Zhu
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
|
5
|
Dahan J, Wendehenne D, Ranjeva R, Pugin A, Bourque S. Nuclear protein kinases: still enigmatic components in plant cell signalling. THE NEW PHYTOLOGIST 2010; 185:355-68. [PMID: 19925553 DOI: 10.1111/j.1469-8137.2009.03085.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants constantly face changing conditions in their environment. Unravelling the transduction mechanisms from signal perception at the plasma membrane level down to gene expression in the nucleus is a fascinating challenge. Protein phosphorylation, catalysed by protein kinases, is one of the major posttranslational modifications involved in the specificity, kinetic(s) and intensity of a signal transduction pathway. Although commonly assumed, the involvement of nuclear protein kinases in signal transduction is often poorly characterized. In particular, both their regulation and mode of action remain to be elucidated and may lead to the unveiling of new original mechanisms. For example, unlike animal cells, plant cells contain only a few strictly nucleus-localized protein kinases, which calls into question the role of this cellular distribution between the cytosol and the nucleus in their activation and functions. The control of their nucleocytoplasmic trafficking appears to play a major role in their regulation, probably through promoting interactions with their substrates under specific cellular conditions. However, recent findings showing that the nucleus can generate complex networks of second messengers (e.g. Ca(2+)or diacyglycerol) suggest that nuclear protein kinases could play an active role in the decoding of such signals.
Collapse
Affiliation(s)
- Jennifer Dahan
- UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, France
| | | | | | | | | |
Collapse
|
6
|
Chae MJ, Lee JS, Nam MH, Cho K, Hong JY, Yi SA, Suh SC, Yoon IS. A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. PLANT MOLECULAR BIOLOGY 2007; 63:151-69. [PMID: 16977424 DOI: 10.1007/s11103-006-9079-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 08/19/2006] [Indexed: 05/11/2023]
Abstract
By a differential cDNA screening technique, we have isolated a dehydration-inducible gene (designated OSRK1) that encodes a 41.8 kD protein kinase of SnRK2 family from Oryza sativa. The OSRK1 transcript level was undetectable in vegetative tissues, but significantly increased by hyperosmotic stress and Abscisic acid (ABA). To determine its biochemical properties, we expressed and isolated OSRK1 and its mutants as glutathione S-transferase fusion proteins in Escherichia coli. In vitro kinase assay showed that OSRK1 can phosphorylate itself and generic substrates as well. Interestingly, OSRK1 showed strong substrate preference for rice bZIP transcription factors and uncommon cofactor requirement for Mn(2+) over Mg(2+). By deletion of C-terminus 73 amino acids or mutations of Ser-158 and Thr-159 to aspartic acids (Asp) in the activation loop, the activity of OSRK1 was dramatically decreased. OSRK1 can transphosphorylate the inactive deletion protein. A rice family of abscisic acid-responsive element (ABRE) binding factor, OREB1 was phosphorylated in vitro by OSRK1 at multiple sites of different functional domains. MALDI-TOF analysis identified a phosphorylation site at Ser44 of OREB1 and mutation of the residue greatly decreased the substrate specificity for OSRK1. The recognition motif for OSRK1, RQSS is highly similar to the consensus substrate sequence of AMPK/SNF1 kinase family. We further showed that OSRK1 interacts with OREB1 in a yeast two-hybrid system and co-localized to nuclei by transient expression analysis of GFP-fused protein in onion epidermis. Finally, ectopic expression of OSRK1 in transgenic tobacco resulted in a reduced sensitivity to ABA in seed germination and root elongation. These findings suggest that OSRK1 is associated with ABA signaling, possibly through the phosphorylation of ABF family in vivo. The interaction between SnRK2 family kinases and ABF transcription factors may constitute an important part of cross-talk mechanism in the stress signaling networks in plants.
Collapse
Affiliation(s)
- Min-Ju Chae
- Cell and Genetics Division, National Institute of Agricultural Biotechnology, Suwon, 441-707, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|