1
|
Zhang Y, Zhou J, Tian W, Gui Y, Li Y. Effects of soy flour formulation and pretreatment on the properties of gluten-free cookies: A comprehensive study from flour, dough, to baked products. Food Chem 2025; 468:142481. [PMID: 39700798 DOI: 10.1016/j.foodchem.2024.142481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Grain-based gluten-free cookies are often nutritionally inferior owing to their low protein content. This study aimed to enhance the nutritional value of gluten-free cookies by incorporating soy flour and to investigate the effects of different types of modified soy flour on the properties of gluten-free dough and cookies. Results indicate that all types of modified soy flour significantly decreased water absorption capacity (p < 0.05) and protein molecular weight while significantly increasing free sulfhydryl groups and free amino group content (p < 0.05). Adding modified soy flour significantly reduced the mixograph peak time from 7.26 min to less than 1.9 min (p < 0.05). Incorporating 30 % cysteine-modified soy flour significantly increased the cookie spread ratio from 9.2 to 22.8 (p < 0.05). Moreover, adding modified soy flour maintained the moderate hardness and fracturability of gluten-free cookies and achieved a more desirable color.
Collapse
Affiliation(s)
- Yiqin Zhang
- Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Jianjun Zhou
- Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Wenfei Tian
- Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, USA; State Key Laboratory of Crop Gene Resource and Breeding, National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yijie Gui
- Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, USA; Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Yonghui Li
- Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|
2
|
Colaruotolo LA, Singh SS, Dobson S, Lim LT, Joye IJ, Rogers MA, Corradini MG. Mapping deterioration in electrospun zein nonwoven nanostructures encapsulating corn oil. Curr Res Food Sci 2024; 9:100801. [PMID: 39050407 PMCID: PMC11267021 DOI: 10.1016/j.crfs.2024.100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Electrospun nonwovens of biopolymers are gaining popularity in filtration, coatings, encapsulation, and packaging materials. However, their applications are hindered by limited stability, particularly when loaded with lipids. This research aimed to apply a multiscale approach to gain insights into deteriorative processes, e.g., oxidation, limiting the shelf life of these complex materials, using corn oil-loaded electrospun zein nonwovens as a model system. Oil-doped zein electrospun nonwovens were stored in the dark at 23 °C and 33% relative humidity for 28 days and tested at selected intervals to monitor their morphology and mechanical properties. Lipid oxidation was assessed using the thiobarbituric acid reactive species (TBARS) assay. The photophysical properties of intrinsic, i.e., tyrosine (Tyr), and extrinsic, i.e., boron-dipyrromethene undecanoic acid 581/591 (BODIPY C11), lumiphores were also monitored to evaluate changes in local molecular rigidity, and oxidation, respectively. The protein secondary structure was determined with Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) analysis of the oil-loaded electrospun nonwovens revealed that the diameter of the ribbon-like fiber significantly decreased during storage from 701 ± 23 nm to 620 ± 44 nm. Breakage of the electrospun fibers was observed and correlated with increased brittleness and molecular rigidity of the nonwoven material, reflected by an increase in Tyr emission intensity and phosphorescence lifetime. Changes in tensile strength, brittleness and matrix rigidity also correlated with a zein secondary structure transition from unordered to ordered β-sheets. Raman and luminescence micrographs showed oil migration during storage, thereby increasing lipid oxidation. The correlation between local rigidity and lipid distribution/oxidation suggests that reorganizing protein structures increased material brittleness and displaced encapsulated oils within the electrospun fiber. Understanding deteriorative mechanisms aids in developing innovative strategies to improve the stability of these novel food-grade materials.
Collapse
Affiliation(s)
| | | | - Stacie Dobson
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Iris J. Joye
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Michael A. Rogers
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Maria G. Corradini
- Department of Food Science, University of Guelph, Guelph, ON, Canada
- Arrell Food Institute, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Higashino H, Karatsu A, Masuda T. Catalytic Antioxidant Activity of Two Diterpenoid Polyphenols of Rosemary, Carnosol, and Isorosmanol, against Lipid Oxidation in the Presence of Cysteine Thiol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2193-2201. [PMID: 38254316 DOI: 10.1021/acs.jafc.3c08248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Lamiaceae herbs such as rosemary have excellent antioxidant properties, and lipidic diterpenoid constituents, such as carnosol, are known as characteristic components to exhibit strong antioxidant activity. This study investigates the effect of thiol compounds on the antioxidant properties of diterpenoid polyphenols. The results concerning the antioxidant activity of polyphenols in the presence of thiol showed that two polyphenols, namely, carnosol and isorosmanol, enhanced antioxidant capacity against the radical-induced oxidation of lipids. Further examination of the mechanism revealed that both polyphenols exhibit excellent catalytic antioxidant activity by using the thiol group as a reduction source. Using density functional theory calculations, we attempted to explain why only these two polyphenols exhibit catalytic antioxidant properties. The calculation results and the assumed reaction mechanism suggested that the orthoquinones produced in the antioxidant reactions of carnosol and isorosmanol are more unstable than the others and that the regioselectivity of their reactions with thiols contributes to their catalytic antioxidant properties.
Collapse
Affiliation(s)
- Hayate Higashino
- Graduate School of Human Life Science, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan
| | - Asuka Karatsu
- Graduate School of Human Life Science, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan
| | - Toshiya Masuda
- Graduate School of Human Life Science, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
4
|
Yazici GN, Yilmaz I, Ozer MS. Celiac Disease: Myth or Reality. ADVANCES IN WHEAT BREEDING 2024:665-720. [DOI: 10.1007/978-981-99-9478-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Yang T, Ge J, Wang P, Zhong Y, Zhou Q, Wang X, Cai J, Huang M, Jiang D, Dai T, Cao W. Effect of High-Molecular Weight Glutenin Subunits (HMW-GSs) on Gluten Polymerization during Biscuit Making: Insights from Experimental and Molecular Dynamics Simulation Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:8150-8163. [PMID: 37192322 DOI: 10.1021/acs.jafc.2c08277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The effect of high-molecular weight glutenin subunits (HMW-GSs) on gluten polymerization during biscuit making was investigated using a set of HMW-GS deletion lines. Results showed that the deletion of HMW-GSs improved the biscuit quality compared with the wild type (WT), especially in x-type HMW-GS deletion lines. Slight gluten depolymerization was observed during dough mixing, while progressive gluten polymerization occurred during biscuit baking. The deletion of HMW-GSs suppressed the polymerization of glutenin and gliadin compared with the WT during biscuit baking, especially in x-type HMW-GS deletion lines. These actions resulted in less elevation of the intermolecular β-sheet and ordered α-helix and altering the disulfide (SS) conformation to a less stable conformation in HMW-GS deletion lines compared with the WT during baking. Molecular dynamics simulation analysis further demonstrated that x-type HMW-GSs had higher thermal stability compared with y-type HMW-GSs during heating.
Collapse
Affiliation(s)
- Tao Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiakun Ge
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Pei Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yingxin Zhong
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qin Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xiao Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jian Cai
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mei Huang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dong Jiang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Tingbo Dai
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Weixing Cao
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
6
|
Effect of l-cysteine and l-ascorbic acid addition on properties of meat analogues. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Mechanism differences between reductive and oxidative dough rheology improvers in the formation of 1D and 3D gluten network. Biomaterials 2021; 280:121275. [PMID: 34847431 DOI: 10.1016/j.biomaterials.2021.121275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
Gluten network formed by oxidation of glutenin sulfhydryl groups is the determinant of dough rheological properties, while chemical reagents including oxidants and reductants are both used as dough rheology improvers under different circumstances. This study compares the impact of sodium metabisulfite (SMBS) and azodicarbonamide (ADA), as the representative reductive and oxidative dough improvers, at series of concentrations that offer or remove the same number of electrons form dough, respectively. The alveographic characterization, protein distribution and glutenin composition analysis, and free sulfhydryl measurement were performed on dough containing redox equivalent SMBS or ADA. Finally, at each optimal concentration, the dough protein network was analyzed with confocal microscopy. Results showed that SMBS increased the free sulfhydryl content, loosened the microstructure of gluten network, and thus enhanced dough extensibility. ADA reduced the free sulfhydryl content, compacted the dough microstructure, thus enhanced the tenacity and baking strength of dough. It is therefore proposed that the reductants reduce disulfide bonds in gluten network and renders the formation of one-dimensional gluten network while oxidants promote the disulfide linkage and formation of three-dimensional gluten network. This study offers a theoretic foundation of differentiating dough rheology improvers for their specified application.
Collapse
|
8
|
Won S, Curtis J, Gänzle M. LC-MS/MS quantitation of α-amylase/trypsin inhibitor CM3 and glutathione during wheat sourdough breadmaking. J Appl Microbiol 2021; 133:120-129. [PMID: 34724302 DOI: 10.1111/jam.15346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
AIMS This study aimed to quantify α-amylase/trypsin inhibitor (ATI) CM3 and glutathione (GSH) during wheat sourdough breadmaking. METHODS AND RESULTS Breads were made with two wheat cultivars and fermented with Fructilactobacillus sanfranciscensis, F. sanfranciscensis ΔgshR or Latilactobacillus sakei; chemically acidified and straight doughs served as controls. Samples were analysed after mixing, after proofing and after baking. GSH and CM3 were quantified by multi-reaction-monitoring-based methods on an LC-QTRAP mass spectrometer. Undigested ATI extracts were further examined by SDS-PAGE. CONCLUSIONS GSH abundance was similar after mixing and after proofing but increased after baking (p < 0.001), regardless of fermentation. In breads baked with cv. Brennan, the samples fermented with lactobacilli had higher GSH abundance (p < 0.001) than in the controls. CM3 relative abundance remained similar after mixing and after proofing but decreased after baking (p < 0.001) across all treatments. This trend was supported by the SDS-PAGE analysis in which ATI band intensities decreased after baking (p < 0.001) in all experimental conditions. The overall effect of baking exerted a greater effect on the abundances of GSH and CM3 than fermentation conditions. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report to quantify ATI over the course of breadmaking by LC-MS/MS in sourdough and straight dough processes.
Collapse
|
9
|
Qu C, Yang Q, Ding L, Wang X, Liu S, Wei M. The effect of microwave stabilization on the properties of whole wheat flour and its further interpretation by molecular docking. BMC Chem 2021; 15:57. [PMID: 34656151 PMCID: PMC8520621 DOI: 10.1186/s13065-021-00782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
In order to stabilize the whole wheat flour and extend its shelf life, microwave was employed to heat the wheat bran to inactivate the lipase in this paper. The effects of microwave heating of wheat bran on the lipase activities, gluten properties, dough properties and storage stability of the stabilized whole wheat flour, and the quality of steamed bread made of stabilized whole wheat flour were investigated. Furthermore, molecular docking was applied to interpret the mechanism. The results showed that microwave can reduce lipase activity, maintain the quality of whole wheat flour dough and steamed bread, and retard rancidity. The molecular docking results displayed that the conformation of the amino acids chains near the lipase catalytic center changed, which made the substrate difficult to enter the catalytic center and prevented the hydrolysis of the fat substrate.
Collapse
Affiliation(s)
- Chenling Qu
- College of Food Science and Technology, Henan University of Technology, No. 100 of Lianhua Street, Zhengzhou, 450001, People's Republic of China.
| | - Qiankui Yang
- College of Food Science and Technology, Henan University of Technology, No. 100 of Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Lina Ding
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xueke Wang
- College of Food Science and Technology, Henan University of Technology, No. 100 of Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Shengqiang Liu
- College of Food Science and Technology, Henan University of Technology, No. 100 of Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Min Wei
- College of Food Science and Technology, Henan University of Technology, No. 100 of Lianhua Street, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
10
|
Wang Z, Hao J, Deng Y, Liu J, Wei Z, Zhang Y, Tang X, Zhou P, Iqbal Z, Zhang M, Liu G. Viscoelastic properties, antioxidant activities and structure of wheat gluten modified by rice bran. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Zhang D, Tan B. Effects of different solid-state fermentation ratios of S. cerevisiae and L. plantarum on physico-chemical properties of wheat bran and the quality of whole wheat bread. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4551-4560. [PMID: 33462833 DOI: 10.1002/jsfa.11097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/06/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The addition of wheat bran (WB) could improve the nutritional quality of whole wheat bread (WWB); however, it also caused many negative effects on the quality of bread. To improve the physico-chemical properties of WB and the quality of WWB, WB was solid-state fermented with different ratios of commercially available S. cerevisiae and L. plantarum, and utilized to prepare WWB. RESULTS The physico-chemical properties of WB including dietary fiber content and its components, amino acid composition, and antioxidant activities were determined. After solid-state fermentation, the physico-chemical properties of WB were improved. WBSac:Lac = 2:1 showed higher antioxidant activity (only the total antioxidant activity was slightly lower than WBSac:Lac = 1:1 ), and greater concentration of soluble dietary fiber (9.22%) and essential amino acids / total amino acids (42.04) than the other WB samples. Whole wheat bread quality was investigated by measuring specific volume, porosity, texture, aroma, and volatile compounds. The WWB made with WBSac:Lac = 2:1 showed a higher specific volume, more uniform porosity structure, better texture, and more volatile compounds than the other samples. CONCLUSION Using a ratio of yeast and lactobacilli of 2:1, the solid-state fermentation maximally improves the processing properties of WB, and prepares WWB with the best quality. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duqin Zhang
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, P.R. China
| | - Bin Tan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, P.R. China
| |
Collapse
|
12
|
Liang Z, Gao J, Yu P, Yang D. History, mechanism of action, and toxicity: a review of commonly used dough rheology improvers. Crit Rev Food Sci Nutr 2021; 63:947-963. [PMID: 34309422 DOI: 10.1080/10408398.2021.1956427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Dough rheology improvers, which often are oxidative reagents in nature, have long been used in bread-making industry to enhance protein crosslinking and subsequently improve the dough rheological properties and bread qualities. Numerous studies were conducted to explore the effects of these oxidative agents on dough quality improving, however, the underlying mechanism of their action during dough development has not been fully understood. Due to the public health concerns, multiple oxidative reagents were banned in some countries across the world, while others are still permitted in accordance with regulations. Therefore, a comprehensive understanding of their application, significance, and safety in bread manufacturing is necessary. This review aims to provide a detailed information about the evolutionary history of several commonly used oxidants acting as dough rheology improvers, their mechanisms of action, as well as their potential toxicity.
Collapse
Affiliation(s)
- Zhongxin Liang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jihui Gao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peixuan Yu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Beghin AS, Ooms N, Brijs K, Pareyt B, Moldenaers P, Delcour JA. How Yeast Impacts the Effect of Ascorbic Acid on Wheat Flour Dough Extensional Rheology. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09679-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Gao J, Du H, Zhou Z, Liang Z, Liang H, Zhang P, Wei X, Liu S, Fu L, Wang Y, Che H, Xue W, Xin F, Yang D. Thermal and Acidic Treatments of Gluten Epitopes Affect Their Recognition by HLA-DQ2 in silico. Front Nutr 2021; 8:647750. [PMID: 34095188 PMCID: PMC8169964 DOI: 10.3389/fnut.2021.647750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Celiac disease (CD) is a prevalent disorder with autoimmune features. Dietary exposure of wheat gluten (including gliadins and glutenins) to the small intestine activates the gluten-reactive CD4+ T cells and controls the disease development. While the human leukocyte antigen (HLA) is the single most important genetic factor of this polygenic disorder, HLA-DQ2 recognition of gluten is the major biological step among patients with CD. Gluten epitopes are often rich in Pro and share similar primary sequences. Here, we simulated the solution structures changes of a variety of gluten epitopes under different pH and temperatures, to mimic the fermentation and baking/cooking processes. Based on the crystal structure of HLA-DQ2, binding of differently processed gluten epitopes to DQ2 was studied in silico. This study revealed that heating and pH change during the fermentation process impact the solution structure of gluten epitope. However, binding of differently treated gluten epitope peptide (GEP) to HLA-DQ2 mainly depended on its primary amino acid sequence, especially acidic amino acid residues that play a pivotal role in their recognition by HLA-DQ2.
Collapse
Affiliation(s)
- Jihui Gao
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Haolan Du
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zekun Zhou
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhongxin Liang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongrui Liang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - PeiAo Zhang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xue Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shujun Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Huilian Che
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wentong Xue
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fengjiao Xin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Yang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Dai Y, Tyl C. A review on mechanistic aspects of individual versus combined uses of enzymes as clean label-friendly dough conditioners in breads. J Food Sci 2021; 86:1583-1598. [PMID: 33890293 DOI: 10.1111/1750-3841.15713] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022]
Abstract
Numerous dough improvers are used alone or in combination to enhance the quality of baked goods such as breads. While modern consumers demand consistent quality, the expectations for ingredients have changed over the past few years, and reformulations have taken place to provide "clean label" options. However, the effects and mechanisms of blended dough conditioners suitable for such baked products have not been systematically summarized. In this review, dough and bread properties as affected by different improver combinations are examined, with a focus on additive or synergistic interactions between enzymes or between enzymes and ascorbic acid. The combination of enzymes that hydrolyze starch and cell wall polysaccharides has been shown to reduce textural hardness in fresh and stored bakes goods such as breads. Enzymes that hydrolyze arabinoxylans, the main nonstarch polysaccharide in wheat, have synergistic effects with enzymes that result in cross-linking of wheat flour biopolymers. In some studies, the effects of bread improvers varied for wheat flours of different strength. Overall, bread products in which wheat is used in whole grain form or in a blend with other flours especially benefit from multiple improvers that target different flour constituents in doughs.
Collapse
Affiliation(s)
- Yaxi Dai
- Department of Food Science and Technology, University of Georgia, Athens, Georgia, USA
| | - Catrin Tyl
- Department of Food Science and Technology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
16
|
Pourmohammadi K, Abedi E. Enzymatic modifications of gluten protein: Oxidative enzymes. Food Chem 2021; 356:129679. [PMID: 33827045 DOI: 10.1016/j.foodchem.2021.129679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Oxidative enzymes treat weak flours in order to restore the gluten network of damaged wheat flour and reduce the economic and technological losses. The present review concentrates on oxidative exogenous enzymes (transglutaminase, laccase, glucose oxidase, hexose oxidase) and oxidative endogenous enzymes (tyrosinase, peroxidase, catalase, sulfhydryl oxidase, lipoxygenase, lipase, protein disulfide isomerase, NAD(P)H-dependent dehydrogenase, thioredoxin reductase and glutathione reductase) and their effects on the rheological, functional, and conformational features of gluten and its subunits. Overall, transglutaminase is used in wheat-based foods through introducing isopeptide bonds (ε-γ glutamyl-lysine). Glucose oxidase, hexose oxidase, peroxidase, sulfhydryl oxidase, lipase, and lipoxygenase form disulfide and nondisulfide bonds through producing hydrogen peroxide. Laccase, tyrosinase, and protein disulfide isomerase form cross-links between tyrosine and cysteine residues by generating radicals. Thioredoxin reductase and glutathione reductase create new inter disulfide bonds. The effect of oxidative enzymes on the formation of covalent cross-linkages were substantially more than non-covalent bonds in gluten structure.
Collapse
Affiliation(s)
- Kiana Pourmohammadi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran.
| | - Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran.
| |
Collapse
|
17
|
Monge-Morera M, Lambrecht MA, Deleu LJ, Louros NN, Rousseau F, Schymkowitz J, Delcour JA. Heating Wheat Gluten Promotes the Formation of Amyloid-like Fibrils. ACS OMEGA 2021; 6:1823-1833. [PMID: 33521423 PMCID: PMC7841782 DOI: 10.1021/acsomega.0c03670] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/14/2020] [Indexed: 05/10/2023]
Abstract
Amyloid fibrils (AFs) are highly ordered nanofibers composed of proteins rich in β-sheet structures. In this study, the impact of heating conditions relevant in food processing on AF formation of wheat gluten (WG) was investigated. Unheated and heated WG samples were treated with proteinase K and trypsin to solubilize the nonfibrillated protein, while protein fibrils were extracted with 0.05 M sodium phosphate buffer (pH 7.0) from the undissolved fraction obtained by the same enzymatic treatment. Conditions (i.e., heating at 78° for 22 h) resembling those in slow cooking induced the formation of straight fibrils (ca. 700 nm in length), whereas boiling WG for at least 15 min resulted in longer straight fibrils (ca. 1-2 μm in length). The latter showed the typical green birefringence of AFs when stained with Congo red. Their X-ray fiber diffraction patterns showed the typical reflection (4.7 Å) for inter-β-strand spacing. These results combined with those of Fourier transform infrared and thioflavin T spectroscopy measurements validated the identification of β-rich amyloid-like fibrils (ALFs) in dispersions of boiled WG. Boiling for at least 15 min converted approximately 0.1-0.5% of WG proteins into ALFs, suggesting that they can be present in heat-treated WG-containing food products and that food-relevant heating conditions have the potential to induce protein fibrillation.
Collapse
Affiliation(s)
- Margarita Monge-Morera
- Laboratory
of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition
Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Marlies A. Lambrecht
- Laboratory
of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition
Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Lomme J. Deleu
- Laboratory
of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition
Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Nikolaos N. Louros
- Switch
Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3001 Leuven, Belgium
| | - Frederic Rousseau
- Switch
Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3001 Leuven, Belgium
| | - Joost Schymkowitz
- Switch
Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3001 Leuven, Belgium
| | - Jan A. Delcour
- Laboratory
of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition
Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
18
|
Li Y, Fu J, Shen Q, Yang D. High-Molecular-Weight Glutenin Subunits: Genetics, Structures, and Relation to End Use Qualities. Int J Mol Sci 2020; 22:E184. [PMID: 33375389 PMCID: PMC7795185 DOI: 10.3390/ijms22010184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
High-molecular-weight glutenin subunits (HMW-GSs) are storage proteins present in the starchy endosperm cells of wheat grain. Encoding the synthesis of HMW-GS, the Glu-1 loci located on the long arms of group 1 chromosomes of the hexaploid wheat (1A, 1B, and 1D) present multiple allelism. In hexaploid wheat cultivars, almost all of them express 3 to 5 HMW-GSs and the 1Ay gene is always silent. Though HMW-GSs are the minor components in gluten, they are crucial for dough properties, and certain HMW-GSs make more positive contributions than others. The HMW-GS acts as a "chain extender" and provides a disulfide-bonded backbone in gluten network. Hydrogen bonds mediated by glutamine side chains are also crucial for stabilizing the gluten structure. In most cases, HMW-GSs with additional or less cysteines are related to the formation of relatively more or less interchain disulfide bonds and HMW-GSs also affect the gluten secondary structures, which in turn impact the end use qualities of dough.
Collapse
Affiliation(s)
- Yi Li
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (Y.L.); (J.F.)
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| | - Jiahui Fu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (Y.L.); (J.F.)
| | - Qun Shen
- Key Laboratory of Plant Protein and Grain Processing, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China;
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (Y.L.); (J.F.)
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| |
Collapse
|
19
|
Du N, Wei ZC, Deng YY, Zhang Y, Tang XJ, Li P, Huang YB, Zeng QH, Wang JJ, Zhang MW, Liu G. Characterization of recombinant rice quiescin sulfhydryl oxidase and its improvement effect on wheat flour-processing quality. Food Chem 2020; 333:127492. [PMID: 32659673 DOI: 10.1016/j.foodchem.2020.127492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023]
Abstract
In this study, recombinant rice quiescin sulfhydryl oxidase (rQSOX) was expressed and characterized, and its performance in flour-processing quality was further evaluated. The purified rQSOX exhibited the highest sulfhydryl oxidation activity (1.96 IU/mg) using dithiothreitol as a substrate, accompanying the production of H2O2. The optimal temperature and pH were 60 °C and pH 8.0 for rQSOX catalyzing oxidation of dithiothreitol. And rQSOX retained 50% of its maximum activity after incubation at 80 °C for 1 h. Moreover, rQSOX supplementation improved the farinograph properties of dough, indicated by the increased dough stability time and decreased degree of softening, and enhanced viscoelastic properties of the dough. Addition of rQSOX (10 IU/g flour) provided remarkable improvement in specific volume (37%) and springiness (17%) of the steamed bread, and significantly reduced the hardness by half, which was attributed to the strengthened gluten network. The results provide an understanding for rQSOX using in flour-processing industry.
Collapse
Affiliation(s)
- Nian Du
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Life Science, Yangtze University, Jingzhou, Hubei 434020, China
| | - Zhen-Cheng Wei
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yuan-Yuan Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yan Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiao-Jun Tang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ping Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yan-Bo Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Jing-Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ming-Wei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
20
|
Abedi E, Pourmohammadi K. Physical modifications of wheat gluten protein: An extensive review. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture Fasa University Fasa Iran
| | | |
Collapse
|
21
|
Abedi E, Pourmohammadi K. The effect of redox agents on conformation and structure characterization of gluten protein: An extensive review. Food Sci Nutr 2020; 8:6301-6319. [PMID: 33312518 PMCID: PMC7723219 DOI: 10.1002/fsn3.1937] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/09/2022] Open
Abstract
Gluten protein as one of the plant resources is affected by redox agent. Chemical modifications by redox agent have myriad advantages mainly short reaction times, no requirement for specialized equipment, low cost, and highly clear modification impacts. The gluten network properties could be influenced through redox agents (oxidative and reducing agents) which are able to alter the strength of dough via different mechanisms for various purposes. The present review examined the impact of different redox compounds on gluten and its subunits based on their effects on their bonds and conformations and thus with their impacts on the physico-chemical, morphological, and rheological properties of gluten and their subunits. This allows for the use of gluten for different of purposes in the food and nonfood industry.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and TechnologyCollege of AgricultureFasa UniversityFasaIran
| | - Kiana Pourmohammadi
- Department of Food Science and TechnologyCollege of AgricultureFasa UniversityFasaIran
| |
Collapse
|
22
|
Guo L, Xu D, Fang F, Jin Z, Xu X. Effect of glutathione on wheat dough properties and bread quality. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Lu L, Xing JJ, Yang Z, Guo XN, Zhu KX. Influence of ε-poly-l-lysine treated yeast on gluten polymerization and freeze-thaw tolerance of frozen dough. Food Chem 2020; 343:128440. [PMID: 33127224 DOI: 10.1016/j.foodchem.2020.128440] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/16/2023]
Abstract
The effects of ε-poly-l-lysine (ε-PL) treated yeast on gluten polymerization of frozen dough and quality of steamed bread after freeze-thaw cycles were investigated. Compared with steamed bread made from frozen dough containing ε-PL and untreated yeast (PUTY) or only untreated yeast, steamed bread made from frozen dough containing ε-PL treated yeast (PTY) had a larger specific volume, lower hardness and more porous. A dynamic rheological and scanning electron microscopic analysis demonstrated that using PTY instead of yeast could reduce dough elasticity and damage protein network after freeze-thaw cycles. Lower sodium dodecyl sulfate (SDS) soluble polymeric proteins and monomeric proteins, and higher SDS insoluble proteins were found in frozen dough containing PTY, which indicates a reduced depolymerization of gluten proteins after freeze-thaw cycles. After 4 freeze-thaw cycles, the lower glutathione and free sulfhydryl in dough containing PTY indicate that the interchain disulfide bonds between proteins were preserved.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Jun-Jie Xing
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Zhen Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
24
|
Chemical modifications and their effects on gluten protein: An extensive review. Food Chem 2020; 343:128398. [PMID: 33268180 DOI: 10.1016/j.foodchem.2020.128398] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 12/21/2022]
Abstract
Gluten protein as one of the plant resources is susceptible to genetic, physical, chemical, enzymatic and engineering modifications. Chemical modifications have myriad advantages over other treatments, including short reaction times, low cost, no requirement for specialized equipment, and highly clear modification effects. Therefore, chemical modification of gluten can be mainly conducted via acylation, glycosylation, phosphorylation, and deamidation. The present review investigated the impact of different chemical compounds on conformations of gluten and its subunits. Moreover, their effects on the physico-chemical, morphological, and rheological properties of gluten and their subunits were studied. This allows for the use of gluten for a variety of purposes in the food and non-food industry.
Collapse
|
25
|
Baudouin F, Nogueira TL, van der Mijnsbrugge A, Frederix S, Redl A, Morel MH. Mechanochemical activation of gluten network development during dough mixing. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Wang Q, Jia F, Zhang X, Wang X, Li J, Wang J. Transcriptome analysis reveals that the multiple metabolic pathways were related to gluten polymerization in different quality wheats (Triticum aestivum L.). Food Sci Nutr 2020; 8:4573-4583. [PMID: 32884737 PMCID: PMC7455946 DOI: 10.1002/fsn3.1769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/05/2022] Open
Abstract
The rapid development of transcriptome sequencing technology has contributed to the discovery of numerous genes in plant; however, the role of gene expression in postharvest wheat remains largely unexplored. In this study, differentially expressed genes (DEGs) were identified by RNA-seq in different quality wheats. The 102.6 Gb clean reads had been yielded from the nine RNA-seq libraries. Typically, there were 1791 upregulated and 2,677 downregulated DEGs, respectively, in strong-gluten wheat compared with weak-gluten wheat. Specifically, a total of 4,468 DEGs were classified into 286 Gene Ontology (GO) terms and 131 Kyoto Encyclopedia of Genes and Genomes terms (KEGG). Moreover, the storage protein components, starch and sucrose metabolism, and plant hormone signal transduction-related genes were discovered, which had involved 109 DEGs. The wet gluten proteins content was 35.24% and 17.36%, and the glutenin macropolymer content was 6.38% and 5.01% between the strong- and weak-gluten wheat, respectively. The POD activities of the different quality wheats were 6,571.14, 5,341.24, and 4,851.48 U/g/min, respectively. The significant difference of starch and sucrose metabolism, hormone, POD, and CAT enzyme along with the higher ATPase activity might potentially affect gluten polymerization, which might thereby result in the different qualities of wheats.
Collapse
Affiliation(s)
- Qi Wang
- College of BioengineeringHenan University of TechnologyZhengzhouChina
| | - Feng Jia
- College of BioengineeringHenan University of TechnologyZhengzhouChina
| | - Xia Zhang
- College of BioengineeringHenan University of TechnologyZhengzhouChina
| | - Xiaohua Wang
- College of BioengineeringHenan University of TechnologyZhengzhouChina
| | - Jinhe Li
- College of BioengineeringHenan University of TechnologyZhengzhouChina
| | - Jinshui Wang
- College of BioengineeringHenan University of TechnologyZhengzhouChina
| |
Collapse
|
27
|
Effect of aging at different temperatures on LAOS properties and secondary protein structure of hard wheat flour dough. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Zhao C, Luo Z, Li M, Gao J, Liang Z, Sun S, Wang X, Yang D. Wheat protein disulfide isomerase improves bread properties via different mechanisms. Food Chem 2020; 315:126242. [PMID: 31991256 DOI: 10.1016/j.foodchem.2020.126242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 11/29/2022]
Abstract
Gluten network formation by the oxidation of glutenin sulfhydryl group majorly impacts the subsequent dough and bread properties, and an evolutionary list of chemical oxidants has been used as improvers in bread making. A systematic comparison between azodicarbonamide (ADA), Vc, wheat protein disulfide isomerase (wPDI) and disulfide bond formation protein C (DsbC) of their effects on the alveographic characters of dough and texture properties of subsequent bread was performed. Results show that wPDI improves dough alveographic characters and bread texture properties better in most aspects than other reagents. Free sulfhydryl analysis finds that addition of wPDI increased the free sulfhydryl content in both dough and bread. Compare with inorganic reagents and its bacterial homologue, improving the dough and bread properties with less oxidation of sulfhydryl lead to the proposal that wPDI acts by catalyzing the formation of rheologically active disulfide and reduction of inactive ones in a substrate specific manner.
Collapse
Affiliation(s)
- Chunfei Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China
| | - Ziyue Luo
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China
| | - Mingze Li
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China
| | - Jihui Gao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China
| | - Zhongxin Liang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China
| | - Siyuan Sun
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China
| | - Xi Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China.
| |
Collapse
|
29
|
Effect of different treatment methods on protein aggregation characteristics in wheat flour maturation. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Joye I. Protein Digestibility of Cereal Products. Foods 2019; 8:E199. [PMID: 31181787 PMCID: PMC6617089 DOI: 10.3390/foods8060199] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022] Open
Abstract
Protein digestibility is currently a hot research topic and is of big interest to the food industry. Different scoring methods have been developed to describe protein quality. Cereal protein scores are typically low due to a suboptimal amino acid profile and low protein digestibility. Protein digestibility is a result of both external and internal factors. Examples of external factors are physical inaccessibility due to entrapment in e.g., intact cell structures and the presence of antinutritional factors. The main internal factors are the amino acid sequence of the proteins and protein folding and crosslinking. Processing of food is generally designed to increase the overall digestibility through affecting these external and internal factors. However, with proteins, processing may eventually also lead to a decrease in digestibility. In this review, protein digestion and digestibility are discussed with emphasis on the proteins of (pseudo)cereals.
Collapse
Affiliation(s)
- Iris Joye
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
31
|
Geng H, Shi J, Fuerst EP, Wei J, Morris CF. Physical Mapping of Peroxidase Genes and Development of Functional Markers for TaPod-D1 on Bread Wheat Chromosome 7D. FRONTIERS IN PLANT SCIENCE 2019; 10:523. [PMID: 31068962 PMCID: PMC6491870 DOI: 10.3389/fpls.2019.00523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Peroxidase (POD) activity in wheat (Triticum aestivum L.) grain influences natural carotenoid pigment content and is associated with the color of flour, and processing and product quality. Here, we report the molecular characterization and physical mapping of POD genes in bread wheat. The complete genomic DNA (gDNA) sequence of two POD genes (TaPod-A2 and TaPod-D1), and the partial gDNA sequence of two additional POD genes (TaPod-A3 and TaPod-B1) from wheat were characterized using in silico cloning and validated through laboratory experiments. Using a set of 21 nullisomic-tetrasomic (NT) lines, six group-7 ditelosomic (Dt) lines, and 38 group-7 deletion (Del) lines of Chinese Spring (CS), TaPod-A2 and TaPod-D1 were found to be physically located on 0.73-0.83 and on the most distal 0.39 fraction arm length (FL) of 7AS and 7DS in cv. CS, respectively; whereas, TaPod-A3 and TaPod-B1 were assigned to the 0.40-0.49 and 0.40-0.48 FL of 7AL and 7BL, respectively. Based on single nucleotide polymorphisms (SNPs) of two alleles at the TaPod-D1 locus, two functional markers POD-7D1 and POD-7D6 were developed, amplifying 540- and 640-bp, fragments in varieties with higher and lower POD activities, respectively. A total of 224 wheat varieties were analyzed and showed a significant association between the polymorphic fragments and POD activity using POD-7D1 and POD-7D6 markers. The analysis of variance (ANOVA) indicated the average POD activities of 115 varieties with TaPod-D1a were significantly lower than 109 varieties with TaPod-D1b (P < 0.01). This study provides useful information of the POD genes in bread wheat, insight into wheat genome synteny and structure, gene-specific markers, and contributes a valuable resource for quality improvement in wheat breeding programs.
Collapse
Affiliation(s)
- Hongwei Geng
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, China
| | - Jia Shi
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, China
| | - E. Patrick Fuerst
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States, Affiliated with the Western Wheat Quality Laboratory
| | - Jingxin Wei
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Craig F. Morris
- USDA-ARS Western Wheat Quality Laboratory, E-202 Food Science and Human Nutrition Facility East, Washington State University, Pullman, WA, United States
| |
Collapse
|
32
|
Zhang Y, Chen M, Chen Y, Hou Y, Hu SQ. Characterization and Exploration of Recombinant Wheat Catalase for Improvement of Wheat-Flour-Processing Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2660-2669. [PMID: 30739449 DOI: 10.1021/acs.jafc.8b06646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The wheat catalase gene ( wcat1) was cloned and overexpressed in Pichia pastoris. The purified wCat1 exhibits its highest activity at pH 7.5 and 35 °C with Km and Vmax of 22.95 mM and 0.24 μmol/min, respectively. wCat1 could markedly improve the farinographic properties of dough, with the stability time increasing and degree of softening decreasing, and enhance the rheological properties of dough. wCat1 could also elevate bread-making quality, with increased specific volume of the bread and decreased hardness, gumminess, and chewiness, which are attributable to increased amounts of SDS-insoluble protein in dough, resulting in extended glutenin networks and thus larger pores in the fermented dough and bread crumb. The decrease of hydrogen peroxide and increase of free thiol groups in wCat1-treated dough suggest that the decomposition of hydrogen peroxide by wCat1 likely promotes disulfide-bond formation and thus the cross-linking of dough proteins.
Collapse
Affiliation(s)
- Yaping Zhang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| | - Meirong Chen
- Graduate School of Life Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Yu Chen
- Guangdong Food Industry Research Institute Company Ltd. , Guangzhou , Guangdong 511400 , China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| |
Collapse
|
33
|
|
34
|
Sun X, Chen M, Jia F, Hou Y, Hu SQ. Crystal Structure of Wheat Glutaredoxin and Its Application in Improving the Processing Quality of Flour. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12079-12087. [PMID: 30346751 DOI: 10.1021/acs.jafc.8b03590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glutaredoxin (Grx) is a ubiquitous oxidoreductase that plays a vital role in maintaining cellular redox homeostasis. In comparison to Grx from other organisms, plant Grx is unique in that it has many isoforms, which, thus, suggests probably diverse functions and mechanisms. Therefore, structure-function characterization of plant Grx is necessary to have in-depth knowledge and explore its application in industry. In this study, wheat Grx (wGrx) was overexpressed and purified and the crystal structure of wGrx was determined at 2.94 Å resolution. Interestingly, the structure for the first time captured both the oxidized form and the transient state of reduced-oxidized wGrx in a crystal. The mutagenesis of wGrx suggests that it adopts a monothiol catalytic mechanism. wGrx has the ability to reduce wheat thioredoxin (wTrx), and this is the first example of the reduction of thioredoxin subgroup h class II by Grx. Flour farinograph and dynamic rheological analysis showed that wGrx together with wTrx has a positive effect on dough formation, which is probably attributed to the increased sodium dodecyl sulfate (SDS)-insoluble gluten macropolymer (GMP) through increasing the intermolecular disulfide bond induced by the wGrx-wTrx system. The results indicate great potential of wGrx-wTrx as a novel synergetic enzymatic additive and may be employed to fine-tune the processing performance of food related to the redox reaction.
Collapse
Affiliation(s)
- Xiaomei Sun
- School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510641 , People's Republic of China
| | - Meirong Chen
- Graduate School of Life Science , Hokkaido University , Sapporo , Hokkaido 060-0810 , Japan
| | - Feng Jia
- School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510641 , People's Republic of China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Song-Qing Hu
- School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510641 , People's Republic of China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , Guangzhou , Guangdong 510640 , People's Republic of China
| |
Collapse
|
35
|
Wang B, Liu F, Luo S, Li P, Mu D, Zhao Y, Zhong X, Jiang S, Zheng Z. Effects of High Hydrostatic Pressure on the Properties of Heat-Induced Wheat Gluten Gels. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2205-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Ooms N, Jansens KJ, Pareyt B, Reyniers S, Brijs K, Delcour JA. The impact of disulfide bond dynamics in wheat gluten protein on the development of fermented pastry crumb. Food Chem 2018; 242:68-74. [DOI: 10.1016/j.foodchem.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/11/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
|
37
|
Influence of black tea fractions addition on dough characteristics, textural properties and shelf life of wheat bread. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3033-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Amiri A, Shahedi M, Kadivar M. Structural properties of gluten modified by ascorbic acid and transglutaminase. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1349141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amir Amiri
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mohammad Shahedi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mahdi Kadivar
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
39
|
Wang JJ, Liu G, Huang YB, Zeng QH, Hou Y, Li L, Ou S, Zhang M, Hu SQ. Dissecting the Disulfide Linkage of the N-Terminal Domain of HMW 1Dx5 and Its Contributions to Dough Functionality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6264-6273. [PMID: 28692254 DOI: 10.1021/acs.jafc.7b02449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The N-terminal domain of HMW-GS 1Dx5 (1Dx5-N) contains three cysteine residues (Cys10, Cys25, Cys40), which are the basis of gluten network formation through disulfide bonds. Disulfide linkage in 1Dx5-N was dissected by site-directed mutagenesis and LC-MS/MS, and its contributions to structural and conformational stability of 1Dx5-N and dough functionality were investigated by circular dichroism, intrinsic fluorescence, surface hydrophobicity determination, size exclusion chromatography, nonreducing/reducing SDS-PAGE, atomic force microscopy, and farinographic analysis. Results showed that Cys10 and Cys40 of 1Dx5-N were the active sites for intermolecular linkage. Meanwhile, Cys40 also exhibited the ability to form intrachain disulfide linkage with Cys25. Moreover, Cys10 and Cys40 played a functionally important role in maintaining the structural and conformational stability and high surface hydrophobicity of the N-terminal domain of HMW-GS, which in turn facilitated the formation of HMW polymers and massive disulfide linkage of HMW-GS through hydrophobic interaction. Additionally, the 1Dx5-N mutants in which Cys were replaced by serine (Ser) presented different effects on dough functionality, while only the C25S mutant produced positive effects compared with wild type 1Dx5-N. Na2CO3-induced β-elimination of cystine might occur in glutenin without heating, which would make it much easier to reduce the nutritional quality of flour products by the cost of lysine. Therefore, these results give a deep understanding of the disulfide linkage of the N-terminal domain of HMW-GS and its functional importance, which will provide a practical guide to effectively generate a superior HMW-GS allele by artificial mutagenesis.
Collapse
Affiliation(s)
- Jing Jing Wang
- School of Food Science and Engineering, South China University of Technology , Guangzhou, Guangdong 510641, China
| | - Guang Liu
- School of Food Science and Engineering, South China University of Technology , Guangzhou, Guangdong 510641, China
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences, Guangzhou, 510610, China
| | - Yan-Bo Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology , Guangzhou, Guangdong 510640, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University , Foshan, Guangdong 528231, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology , Guangzhou, Guangdong 510640, China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology , Guangzhou, Guangdong 510641, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology , Guangzhou, Guangdong 510640, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University , Guangzhou, Guangdong 510632, China
| | - Min Zhang
- Department of Food Science, Foshan University , Foshan, Guangdong 528231, China
| | - Song-Qing Hu
- School of Food Science and Engineering, South China University of Technology , Guangzhou, Guangdong 510641, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology , Guangzhou, Guangdong 510640, China
| |
Collapse
|
40
|
Tang KX, Zhao CJ, Gänzle MG. Effect of Glutathione on the Taste and Texture of Type I Sourdough Bread. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4321-4328. [PMID: 28502176 DOI: 10.1021/acs.jafc.7b00897] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Type I sourdough fermentations with Lactobacillus sanfranciscensis as predominant organism accumulate reduced glutathione through glutathione reductase (GshR) activity of L. sanfranciscensis. Reduced glutathione acts as chain terminator for gluten polymerization but is also kokumi-active and may thus enhance bread taste. This study implemented a type I model sourdough fermentations to quantitate glutathione accumulation sourdough, bread dough, and bread and to assess the effect of L. sanfranciscensis GshR on bread volume by comparison of L. sanfranciscensis and an isogenic strain devoid of GshR. L. sanfranciscensis sourdough accumulated the highest amount of reduced glutathione during proofing. Bread produced with the wild type strain had a lower volume when compared to the gshR deficient mutant. The accumulation of γ-glutamyl-cysteine was also higher in L. sanfranciscensis sourdoughs when compared to doughs fermented with the gshR mutant strain. The accumulation of reduced glutathione in L. sanfranciscensis bread did not enhance the saltiness of bread.
Collapse
Affiliation(s)
- Kai Xing Tang
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G2P5, Canada
| | - Cindy J Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G2P5, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G2P5, Canada
- College of Bioengineering and Food Science, Hubei University of Technology , Wuhan 430068, P.R. China
| |
Collapse
|
41
|
Ooms N, Pareyt B, Jansens KJ, Reyniers S, Brijs K, Delcour JA. The impact of redox agents on further dough development, relaxation and elastic recoil during lamination and fermentation of multi-layered pastry dough. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Towards gliadin nanofoams. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-016-3995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Liu G, Wang J, Hou Y, Huang YB, Li CZ, Li L, Hu SQ. Improvements of Modified Wheat Protein Disulfide Isomerases with Chaperone Activity Only on the Processing Quality of Flour. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1840-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Microbial Enzymes as Substitutes of Chemical Additives in Baking Wheat Flour—Part II: Combined Effects of Nine Enzymes on Dough Rheology. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1744-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Wang K, Luo S, Cai J, Sun Q, Zhao Y, Zhong X, Jiang S, Zheng Z. Effects of partial hydrolysis and subsequent cross-linking on wheat gluten physicochemical properties and structure. Food Chem 2016; 197:168-74. [DOI: 10.1016/j.foodchem.2015.10.123] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 09/12/2015] [Accepted: 10/24/2015] [Indexed: 11/27/2022]
|
46
|
Differentiation of rye and wheat flour as well as mixtures by using the kinetics of Karl Fischer water titration. Food Chem 2016; 195:49-55. [DOI: 10.1016/j.foodchem.2015.08.124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 06/15/2015] [Accepted: 08/24/2015] [Indexed: 11/23/2022]
|
47
|
Renzetti S, Rosell CM. Role of enzymes in improving the functionality of proteins in non-wheat dough systems. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2015.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Vilgis TA. Soft matter food physics--the physics of food and cooking. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:124602. [PMID: 26534781 DOI: 10.1088/0034-4885/78/12/124602] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from 'hard matter systems', such as chocolates or crystalline fats, to 'soft matter' in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.
Collapse
Affiliation(s)
- Thomas A Vilgis
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| |
Collapse
|
49
|
Rheological and functional properties of composite sweet potato - wheat dough as affected by transglutaminase and ascorbic acid. Journal of Food Science and Technology 2015; 53:1178-88. [PMID: 27162397 DOI: 10.1007/s13197-015-2004-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/09/2015] [Accepted: 08/18/2015] [Indexed: 10/22/2022]
Abstract
Effect of transglutaminase (TGM) and ascorbic acid (AA) on composite sweet potato - wheat dough functional and rheological properties was studied. Partial substitution of wheat flour with sweet potato flour at the level of 20 % significantly (P ≤ 0.05) reduced glutenin, gliadin, dough stability, protein weakening, storage modulus (G') and viscous modulus (G″). Mixolab revealed that both TGM and AA treated dough had stability and protein weakening closed to wheat dough (control), with TGM treated dough having the highest values. TGM Introduced new cross-link bonds as shown by the change of amino acid concentration, leading to an increase in storage modulus (G') and viscous modulus (G″), with G' being higher at all levels of TGM concentration. The opposite was observed for composite dough treated with AA as measured by controlled - stress rheometer. TGM treatment increased glutenin and gliadin content. Compared with the control, dough treated with AA exhibited high molecular weight of polymers than TGM treated dough. The results indicate that the TGM and AA modification of the mixolab and dynamic rheological characteristics (G' and G″) dependent on the changes of GMP, glutenin, gliadin and protein weakening in the composite dough. TGM and AA treatment could improve functional and rheological properties of sweet potato - wheat dough to levels that might be achieved with normal wheat bread. However, it's extremely important to optimize the concentrations of both additives to obtain the optimum response.
Collapse
|
50
|
Ooms N, Pareyt B, Brijs K, Delcour JA. Ingredient Functionality in Multilayered Dough-margarine Systems and the Resultant Pastry Products: A Review. Crit Rev Food Sci Nutr 2015; 56:2101-14. [DOI: 10.1080/10408398.2014.928259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|