1
|
Liu X, Xu Z, Feng B, Zhou Q, Guo S, Liao S, Ou Y, Fan X, Wang T. Dissection of a novel major stable QTL on chromosome 7D for grain hardness and its breeding value estimation in bread wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1356687. [PMID: 38362452 PMCID: PMC10867189 DOI: 10.3389/fpls.2024.1356687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Grain hardness (Gh) is important for wheat processing and end-product quality. Puroindolines polymorphism explains over 60% of Gh variation and the novel genetic factors remain to be exploited. In this study, a total of 153 quantitative trait loci (QTLs), clustered into 12 genomic intervals (C1-C12), for 13 quality-related traits were identified using a recombinant inbred line population derived from the cross of Zhongkemai138 (ZKM138) and Chuanmai44 (CM44). Among them, C7 (harboring eight QTLs for different quality-related traits) and C8 (mainly harboring QGh.cib-5D.1 for Gh) were attributed to the famous genes, Rht-D1 and Pina, respectively, indicating that the correlation of involved traits was supported by the pleotropic or linked genes. Notably, a novel major stable QTL for Gh was detected in the C12, QGh.cib-7D, with ZKM138-derived allele increasing grain hardness, which was simultaneously mapped by the BSE-Seq method. The geographic pattern and transmissibility of this locus revealed that the increasing-Gh allele is highly frequently present in 85.79% of 373 worldwide wheat varieties and presented 99.31% transmissibility in 144 ZKM138-derivatives, indicating the non-negative effect on yield performance and that its indirect passive selection has happened during the actual breeding process. Thus, the contribution of this new Gh-related locus was highlighted in consideration of improving the efficiency and accuracy of the soft/hard material selection in the molecular marker-assisted process. Further, TraesCS7D02G099400, TraesCS7D02G098000, and TraesCS7D02G099500 were initially deduced to be the most potential candidate genes of QGh.cib-7D. Collectively, this study provided valuable information of elucidating the genetic architecture of Gh for wheat quality improvement.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Insitute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Shaodan Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuhao Ou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Filip E, Woronko K, Stępień E, Czarniecka N. An Overview of Factors Affecting the Functional Quality of Common Wheat ( Triticum aestivum L.). Int J Mol Sci 2023; 24:7524. [PMID: 37108683 PMCID: PMC10142556 DOI: 10.3390/ijms24087524] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops worldwide, and, as a resilient cereal, it grows in various climatic zones. Due to changing climatic conditions and naturally occurring environmental fluctuations, the priority problem in the cultivation of wheat is to improve the quality of the crop. Biotic and abiotic stressors are known factors leading to the deterioration of wheat grain quality and to crop yield reduction. The current state of knowledge on wheat genetics shows significant progress in the analysis of gluten, starch, and lipid genes responsible for the synthesis of the main nutrients in the endosperm of common wheat grain. By identifying these genes through transcriptomics, proteomics, and metabolomics studies, we influence the creation of high-quality wheat. In this review, previous works were assessed to investigate the significance of genes, puroindolines, starches, lipids, and the impact of environmental factors, as well as their effects on the wheat grain quality.
Collapse
Affiliation(s)
- Ewa Filip
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Karolina Woronko
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Edyta Stępień
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16, 70-383 Szczecin, Poland
| | - Natalia Czarniecka
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| |
Collapse
|
3
|
Morris CF, Luna J, Caffe-Treml M. The Vromindolines of cv. Hayden oat (Avena sativa L.) – A review of the Poeae and Triticeae indolines and a suggested system for harmonization of nomenclature. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2020.103135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Li X, Li Y, Yu X, Sun F, Yang G, He G. Genomics-Enabled Analysis of Puroindoline b2 Genes Identifies New Alleles in Wheat and Related Triticeae Species. Int J Mol Sci 2020; 21:E1304. [PMID: 32075191 PMCID: PMC7072932 DOI: 10.3390/ijms21041304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 01/12/2023] Open
Abstract
Kernel hardness is a key trait of wheat seeds, largely controlled by two tightly linked genes Puroindoline a and b (Pina and Pinb). Genes homologous to Pinb, namely Pinb2, have been studied. Whether these genes contribute to kernel hardness and other important seed traits remains inconclusive. Using the high-quality bread wheat reference genome, we show that PINB2 are encoded by three homoeologous loci Pinb2 not syntenic to the Hardness locus, with Pinb2-7A locus containing three tandem copies. PINB2 proteins have several features conserved for the Pin/Pinb2 phylogenetic cluster but lack a structural basis of significant impact on kernel hardness. Pinb2 are seed-specifically expressed with varied expression levels between the homoeologous copies and among wheat varieties. Using the high-quality genome information, we developed new Pinb2 allele specific markers and demonstrated their usefulness by 1) identifying new Pinb2 alleles in Triticeae species; and 2) performing an association analysis of Pinb2 with kernel hardness. The association result suggests that Pinb2 genes may have no substantial contribution to kernel hardness. Our results provide new insights into Pinb2 evolution and expression and the new allele-specific markers are useful to further explore Pinb2's contribution to seed traits in wheat.
Collapse
Affiliation(s)
- Xiaoyan Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (X.Y.); (F.S.)
| | - Yin Li
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| | - Xiaofen Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (X.Y.); (F.S.)
| | - Fusheng Sun
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (X.Y.); (F.S.)
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (X.Y.); (F.S.)
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (X.Y.); (F.S.)
| |
Collapse
|
5
|
Sequence Diversity and Identification of Novel Puroindoline and Grain Softness Protein Alleles in Elymus, Agropyron and Related Species. DIVERSITY 2018. [DOI: 10.3390/d10040114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The puroindoline proteins, PINA and PINB, which are encoded by the Pina and Pinb genes located at the Ha locus on chromosome 5D of bread wheat, are considered to be the most important determinants of grain hardness. However, the recent identification of Pinb-2 genes on group 7 chromosomes has stressed the importance of considering the effects of related genes and proteins. Several species related to wheat (two diploid Agropyron spp., four tetraploid Elymus spp. and five hexaploid Elymus and Agropyron spp.) were therefore analyzed to identify novel variation in Pina, Pinb and Pinb-2 genes which could be exploited for the improvement of cultivated wheat. A novel sequence for the Pina gene was detected in Elymus burchan-buddae, Elymus dahuricus subsp. excelsus and Elymus nutans and novel PINB sequences in Elymus burchan-buddae, Elymus dahuricus subsp. excelsus, and Elymus nutans. A novel PINB-2 variant was also detected in Agropyron repens and Elymus repens. The encoded proteins detected all showed changes in the tryptophan-rich domain as well as changes in and/or deletions of basic and hydrophobic residues. In addition, two new AGP sequences were identified in Elymus nutans and Elymus wawawaiensis. The data presented therefore highlight the sequence diversity in this important gene family and the potential to exploit this diversity to modify grain texture and end-use quality in wheat.
Collapse
|
6
|
Li W, Guo H, Wang Y, Xie Y, Zhao L, Gu J, Zhao S, Zhao B, Wang G, Liu L. Identification of novel alleles induced by EMS-mutagenesis in key genes of kernel hardness and starch biosynthesis in wheat by TILLING. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0504-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Nirmal RC, Furtado A, Wrigley C, Henry RJ. Influence of Gene Expression on Hardness in Wheat. PLoS One 2016; 11:e0164746. [PMID: 27741295 PMCID: PMC5065149 DOI: 10.1371/journal.pone.0164746] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/29/2016] [Indexed: 11/18/2022] Open
Abstract
Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences.
Collapse
Affiliation(s)
- Ravi C. Nirmal
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, St Lucia, Qld, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, St Lucia, Qld, Australia
| | - Colin Wrigley
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, St Lucia, Qld, Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, St Lucia, Qld, Australia
- * E-mail:
| |
Collapse
|
8
|
Kumar R, Arora S, Singh K, Garg M. Puroindoline allelic diversity in Indian wheat germplasm and identification of new allelic variants. BREEDING SCIENCE 2015; 65:319-26. [PMID: 26366114 PMCID: PMC4542932 DOI: 10.1270/jsbbs.65.319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 06/20/2015] [Indexed: 05/13/2023]
Abstract
Grain hardness is an important quality trait that influences product development in wheat. This trait is governed by variation in puroindoline proteins (PINA and PINB). Our study evaluated 551 Indian wheat germplasm lines for diversity in Pina and Pinb genes. Eighty-two lines were shortlisted for full length sequencing and grain hardness studies. Sequencing studies identified six unknown alleles: two for the Pina gene and four for the Pinb gene. Five of them were novel with non-synonymous changes in the corresponding amino acid sequences. Identified mutations in the deduced mature proteins and their pre- and pro-peptides influenced the hardness characteristics of the grain. We classified these 82 varieties into different hardness categories with reference to international and Indian systems of classification. The majority of Indian wheat varieties were categorized as hard. This study revealed that unexplored Indian wheat germplasm can be a good source of genetic variability for both Pina and Pinb genes, helping in marker-assisted breeding and in obtaining wheat with different textural properties.
Collapse
Affiliation(s)
- Rohit Kumar
- National Agri-Food Biotechnology Institute,
Mohali-160071, Punjab,
India
| | - Shaweta Arora
- National Agri-Food Biotechnology Institute,
Mohali-160071, Punjab,
India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University,
Chandigarh-160014,
India
| | - Monika Garg
- National Agri-Food Biotechnology Institute,
Mohali-160071, Punjab,
India
- Corresponding author (e-mail: )
| |
Collapse
|
9
|
Ali I, Sardar Z, Rasheed A, Mahmood T. Molecular characterization of the puroindoline-a and b alleles in synthetic hexaploid wheats and in silico functional and structural insights into Pina-D1. J Theor Biol 2015; 376:1-7. [PMID: 25865523 DOI: 10.1016/j.jtbi.2015.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/22/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022]
Abstract
Kernel hardness determined by two tightly linked Puroindoline genes, Pina-D1 and Pinb-D1, located on chromosome 5DS define commercially important characteristics, uses, major grades and export markets of wheat. This study was conducted to characterize Pina-D1 and Pinb-D1 alleles, in fifteen synthetic hexaploid wheats (SHWs) and its relation with grain hardness. Additionally, in silico functional analyses of puroindoline-a protein was conducted for better understanding of their putative importance in grain quality. Six different Pina-D1 alleles were identified in the SHWs, of which three i.e. Pina-D1a, Pina-D1c and Pina-D1d were already known whereas the other three had new sequence polymorphisms and were designated as Pina-D1w, Pina-D1x and Pina-D1y. Three different Pinb-D1 alleles were identified which have been reported earlier and no novel sequence polymorphism was detected. It was concluded that despite some primary, secondary and 3D structure variations, ligand binding sites and disulfide bonds discrepancies, the main features of PINA, i.e. the tryptophan-rich domain, the cysteine backbone, the signal peptide and basic identity of the proteins were all conserved. In silico analysis showed that puroindolines having binding capacity with small parts of prolamins causing celiac disease of human, however their potential role is not obvious. Conclusively, the new Pina-D1 alleles with modest effect on grain hardness, and insight into their functional and structural characteristics are important findings and their putative role in celiac disease require further studies to validate.
Collapse
Affiliation(s)
- Iftikhar Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zainab Sardar
- Department of Botany, Government Jahanzeb Postgraduate College Saidu Sharif, Swat, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
10
|
Alfred RL, Palombo EA, Panozzo JF, Bhave M. The co-operative interaction of puroindolines in wheat grain texture may involve the hydrophobic domain. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2014.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Morris CF, Geng H, Beecher BS, Ma D. A review of the occurrence of Grain softness protein-1 genes in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2013; 83:507-21. [PMID: 23904183 DOI: 10.1007/s11103-013-0110-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/15/2013] [Indexed: 05/02/2023]
Abstract
Grain softness protein-1 (Gsp-1) is a small, 495-bp intronless gene found throughout the Triticeae tribe at the distal end of group 5 chromosomes. With the Puroindolines, it constitutes a key component of the Hardness locus. Gsp-1 likely plays little role in grain hardness, but has direct interest due to its utility in phylogeny and its role in arabinogalactan peptides. Further role(s) remain to be identified. In the polyploid wheats, Triticum aestivum and T. turgidum, the gene is present in a homoeologous series. Since its discovery, there have been conflicting reports and data as to the number of Gsp-1 genes and the level of sequence polymorphism. Little is known about allelic variation within a species. In the simplest model, a single Gsp-1 gene is present in each wheat and Aegilops tauschii genome. The present review critically re-examines the published and some unpublished data (sequence available in the NCBI nucleotide and MIPS Wheat Genome Databases). A number of testable hypotheses are identified, and include the level of polymorphism that may represent (and define) different Gsp-1 alleles, the existence of a fourth Gsp-1 gene, and the apparent, at times, high level of naturally-occurring or artifactual gene chimeras. In summary, the present data provide firm evidence for at most, three Gsp-1 genes in wheat, although there are numerous data that suggest a more complex model.
Collapse
Affiliation(s)
- Craig F Morris
- USDA-ARS Western Wheat Quality Laboratory, E-202 Food Quality Bldg., Washington State University, P.O. Box 646394, Pullman, WA, 99164-6394, USA,
| | | | | | | |
Collapse
|
12
|
Identification and distribution of Puroindoline b-2 variant gene homologs in Hordeum. Genetica 2013; 141:359-68. [PMID: 24043611 DOI: 10.1007/s10709-013-9735-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
The barley hordoindoline genes (Hina and Hinb) are homologous to the wheat puroindoline genes (Pina and Pinb). These genes are involved in grain hardness, which is an important quality for barley processing. We identified novel variants of Hina and Hinb in 10 wild Hordeum species (H. bogdanii, H. brachyantherum, H. bulbosum, H. chilense, H. comosum, H. marinum, H. murinum, H. patagonicum, H. pusillum, and H. roshevitzii) covering all Hordeum genomes and preliminarily named them Hinc. These nucleotide sequences were highly similar to those of Puroindoline b-2 variant genes (Pinb-2v) and were located on chromosome 7I in H. chilense. The Hinc genes in H. bogdanii, H. bulbosum, H. patagonicum, and H. roshevitzii were pseudogenes possessing in-frame stop codons. We also found a partial Hinc sequence in H. murinum. This gene was not found in cultivated barley and H. vulgare subsp. spontaneum. The phylogenetic tree of Gsp-1, Hin, and Pin genes demonstrates that Hinc and Pinb-2v genes formed one cluster. Therefore, we considered that Hinc and Pinb-2v genes shared a common ancestral gene and were homologous to each other. We also studied the evolutional process of Gsp-1, Hin, and Pin genes. Our results suggested that Gsp-1 might be the most closely related to a putative ancestral gene on Ha locus.
Collapse
|
13
|
Chen F, Li H, Cui D. Discovery, distribution and diversity of Puroindoline-D1 genes in bread wheat from five countries (Triticum aestivum L.). BMC PLANT BIOLOGY 2013; 13:125. [PMID: 24011219 PMCID: PMC3844508 DOI: 10.1186/1471-2229-13-125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 09/04/2013] [Indexed: 05/27/2023]
Abstract
BACKGROUND Grain texture is one of the most important characteristics in bread wheat (Triticum aestivum L.). Puroindoline-D1 genes play the main role in controlling grain texture and are intimately associated with the milling and processing qualities in bread wheat. RESULTS A series of diagnostic molecular markers and dCAPS markers were used to characterize Pina-D1 and Pinb-D1 in 493 wheat cultivars from diverse geographic locations. A primer walking strategy was used to characterize PINA-null alleles at the DNA level. Results indicated that Chinese landraces encompassing 12 different Puroindoline-D1 allelic combinations showed the highest diversity, while CIMMYT wheat cultivars containing 3 different Puroindoline-D1 allelic combinations showed the lowest diversity amongst wheat cultivars from the five countries surveyed. Two novel Pina-D1 alleles, designated Pina-D1s with a 4,422-bp deletion and Pina-D1u with a 6,460-bp deletion in the Ha (Hardness) locus, were characterized at the DNA level by a primer walking strategy, and corresponding molecular markers Pina-N3 and Pina-N4 were developed for straightforward identification of the Pina-D1s and Pina-D1u alleles. Analysis of the association of Puroindoline-D1 alleles with grain texture indicated that wheat cultivars with Pina-null/Pinb-null allele, possessing an approximate 33-kb deletion in the Ha locus, have the highest SKCS hardness index amongst the different genotypes used in this study. Moreover, wheat cultivars with the PINA-null allele have significantly higher SKCS hardness index than those of Pinb-D1b and Pinb-D1p alleles. CONCLUSIONS Molecular characterization of the Puroindoline-D1 allele was investigated in bread wheat cultivars from five geographic regions, resulting in the discovery of two new alleles - Pina-D1s and Pina-D1u. Molecular markers were developed for both alleles. Analysis of the association of the Puroindoline-D1 alleles with grain texture showed that cultivars with PINA-null allele possessed relatively high SKCS hardness index. This study can provide useful information for the improvement of wheat quality, as well as give a deeper understanding of the molecular and genetic processes controlling grain texture in bread wheat.
Collapse
Affiliation(s)
- Feng Chen
- Agronomy College, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, China
| | - Huanhuan Li
- Agronomy College, Henan Agricultural University, Zhengzhou 450002, China
| | - Dangqun Cui
- Agronomy College, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, China
| |
Collapse
|
14
|
Alfred RL, Palombo EA, Panozzo JF, Bariana H, Bhave M. Stability of puroindoline peptides and effects on wheat rust. World J Microbiol Biotechnol 2013; 29:1409-19. [PMID: 23456858 DOI: 10.1007/s11274-013-1304-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/21/2013] [Indexed: 11/30/2022]
Abstract
Peptides modelled on the tryptophan rich domain of puroindolines and the related grain softness protein-1 have a broad range of antibacterial and antifungal activities. With the aims of further investigating the activities of these antimicrobial peptides we studied their activity against wheat rust diseases and environmental stability. PINA-based peptides were found to have high pH and thermal stability in addition to being stable over long periods at room temperature. These properties could make them excellent candidates as preservatives in food. PuroA, Pina-R39G and PuroB peptides adversely affected the morphology of the stripe rust spores (Puccinia striiformis f. sp. tritici), while PuroA and PuroB showed moderate inhibition of their germination. Additionally, GSP-5D reduced the germination of leaf rust spores (P. triticina). PuroA and PuroB sprayed onto stripe rust infected plants effected a moderate reduction in the number of stripe rust uredinia on wheat seedlings, as did PuroB sprayed onto the seedlings and allowed to coat the leaves for 5 day prior to spore infection. The results suggest that the presence of the PIN-based peptides may lower frequency of initial infection foci.
Collapse
Affiliation(s)
- Rebecca L Alfred
- Faculty of Life and Social Sciences, Environment and Biotechnology Centre, Swinburne University of Technology, PO Box 218, Melbourne, VIC 3122, Australia
| | | | | | | | | |
Collapse
|
15
|
Geng H, Beecher BS, Pumphrey M, He Z, Morris CF. Segregation analysis indicates that Puroindoline b-2 variants 2 and 3 are allelic in Triticum aestivum and that a revision to Puroindoline b-2 gene symbolization is indicated. J Cereal Sci 2013. [DOI: 10.1016/j.jcs.2012.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Mohler V, Schmolke M, Paladey E, Seling S, Hartl L. Association analysis of Puroindoline-D1 and Puroindoline b-2 loci with 13 quality traits in European winter wheat (Triticum aestivum L.). J Cereal Sci 2012. [DOI: 10.1016/j.jcs.2012.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|