1
|
Li B, Luo H, Zhou Y, Xu B, Li P. Enhancement of colour formation of fermented sausages by overexpression of nitric oxide synthase in Staphylococcus vitulinus under hydrogen peroxide stress. Int J Food Microbiol 2024; 421:110781. [PMID: 38852217 DOI: 10.1016/j.ijfoodmicro.2024.110781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
This study used hydrogen peroxide (H2O2) treatment to overexpress the gene of nitric oxide synthase (nos) in Staphylococcus vitulinus, which was then inoculated into fermented sausages to observe its effect on colour development. The results showed that a low concentration of H2O2 (50 mM) could up-regulate the expression of nos by increasing the oxidative stress level of S. vitulinus. At 2 h after treatment, the expression of nos in S. vitulinus was the highest (P < 0.05), and the relative enzyme activity was increased to about 1.5 times that of the untreated. The growth of S. vitulinus was not substantially affected by 50-mM H2O2 treatment (P > 0.05). When H2O2-treated S. vitulinus was inoculated into fermented sausages, the content of nitrosomyoglobin was increased, and the a*-value (indicating redness) was not significantly different from that in the group treated with nitrite (P > 0.05). This study provides a potential method to enhance the ability of S. vitulinus for colourising fermented sausage by inducing the overexpression of nos.
Collapse
Affiliation(s)
- Bingyu Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huiting Luo
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yali Zhou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Baocai Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Peijun Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
2
|
Christensen NJ. Conformations of a highly expressed Z19 α-zein studied with AlphaFold2 and MD simulations. PLoS One 2024; 19:e0293786. [PMID: 38718010 PMCID: PMC11078433 DOI: 10.1371/journal.pone.0293786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
α-zeins are amphiphilic maize seed storage proteins with material properties suitable for a multitude of applications e.g., in renewable plastics, foods, therapeutics and additive manufacturing (3D-printing). To exploit their full potential, molecular-level insights are essential. The difficulties in experimental atomic-resolution characterization of α-zeins have resulted in a diversity of published molecular models. However, deep-learning α-zein models are largely unexplored. Therefore, this work studies an AlphaFold2 (AF2) model of a highly expressed α-zein using molecular dynamics (MD) simulations. The sequence of the α-zein cZ19C2 gave a loosely packed AF2 model with 7 α-helical segments connected by turns/loops. Compact tertiary structure was limited to a C-terminal bundle of three α-helices, each showing notable agreement with a published consensus sequence. Aiming to chart possible α-zein conformations in practically relevant solvents, rather than the native solid-state, the AF2 model was subjected to MD simulations in water/ethanol mixtures with varying ethanol concentrations. Despite giving structurally diverse endpoints, the simulations showed several patterns: In water and low ethanol concentrations, the model rapidly formed compact globular structures, largely preserving the C-terminal bundle. At ≥ 50 mol% ethanol, extended conformations prevailed, consistent with previous SAXS studies. Tertiary structure was partially stabilized in water and low ethanol concentrations, but was disrupted in ≥ 50 mol% ethanol. Aggregated results indicated minor increases in helicity with ethanol concentration. β-sheet content was consistently low (∼1%) across all conditions. Beyond structural dynamics, the rapid formation of branched α-zein aggregates in aqueous environments was highlighted. Furthermore, aqueous simulations revealed favorable interactions between the protein and the crosslinking agent glycidyl methacrylate (GMA). The proximity of GMA epoxide carbons and side chain hydroxyl oxygens simultaneously suggested accessible reactive sites in compact α-zein conformations and pre-reaction geometries for methacrylation. The findings may assist in expanding the applications of these technologically significant proteins, e.g., by guiding chemical modifications.
Collapse
|
3
|
Liu Z, Xu M, Zhou S, Wang J, Huang Z. Enhancing the Thermal Stability of Zein Particle-Stabilized Aeratable Emulsions Through Genipin-Protein Cross-Linking and Its Possible Mechanism of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3707-3718. [PMID: 38268446 DOI: 10.1021/acs.jafc.3c07770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Protein particle-stabilized emulsions often lack thermal stability, impacting their industrial use. This study investigated the effects of genipin (GP)-zein cross-linked particles with varying GP-to-protein weight ratios (0/0.02/0.1:1) on emulsion thermal stability. Enhanced stability was observed at the GP level of 0.1. Heat treatment increased the covalent cross-linking in raw particles and emulsions. Isolated particles from heated emulsions grew in size (micrometer scale) with higher GP levels, unlike heated raw particles (nanoscale). GP-protein cross-linking reduced the droplet-droplet and particle-emulsifier interactions in the heated emulsion. Spectroscopic analysis and electrophoresis revealed that GP-zein cross-linking increased protein structural stability and inhibited nondisulfide and non-GP cross-linking reactions in heated emulsions. The GP-zein bridges between particles at the oil-water interface create strong connections in the particle layer (shell), referred to as "particle-shell locking", enhancing the thermal stability of emulsion significantly. This insight aids the future design of protein-particle-based emulsions, preserving properties like aeratability during thermal processing.
Collapse
Affiliation(s)
- Zelong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Meiyu Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Zhaoxian Huang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Zhang Y, Wu F, Wang J, Xu M, Cao S, Hu Y, Luan G. Impacts of ethanol-plasticization and extrusion on development of zein network and structure of zein-starch dough. Food Chem 2024; 433:137351. [PMID: 37688829 DOI: 10.1016/j.foodchem.2023.137351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/29/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
To improve the viscoelasticity of zein in gluten-free dough, ethanol-plasticization and extrusion modification were employed. The peak viscosity of UZS (unextruded zein-starch) flour and EZS (extruded zein-starch) flour with ethanol (10 %, v/v) increased from 1340.0 to 1996.5 mPa·s and 1336.3 to 2291.5 mPa·s, and the bound bromophenol blue increased from 7.1 μg to 10.6 μg and 5.3 μg to 5.9 μg, respectively. Ethanol-plasticization enhanced zein's hydrophobic interactions and promoted zein network development, thus improving dough compatibility. However, the dense structure of the extruded zein made ethanol inaccessible to the interior, and the structural improvement on extruded zein-starch dough was limited. A model was developed to explain the influences of extrusion and ethanol-plasticization on the behavior of zein in the dough. Extrusion reduces the fiber-forming ability of zein, while ethanol-plasticization facilitates extensive fibrous network formation. This study provides a sound basis for the development of zein in gluten-free foods.
Collapse
Affiliation(s)
- Yingying Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Fengyan Wu
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jieru Wang
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Miaojie Xu
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shan Cao
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yayun Hu
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, China
| | - Guangzhong Luan
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, China.
| |
Collapse
|
5
|
Zein and gluten interactions: A rheological and confocal Raman microscopy study. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Application of zein in gluten-free foods: A comprehensive review. Food Res Int 2022; 160:111722. [DOI: 10.1016/j.foodres.2022.111722] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 01/11/2023]
|
7
|
|
8
|
Glusac J, Fishman A. Enzymatic and chemical modification of zein for food application. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Mattice KD, Marangoni AG. Physical properties of zein networks treated with microbial transglutaminase. Food Chem 2021; 338:128010. [PMID: 32932084 DOI: 10.1016/j.foodchem.2020.128010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Potential improvements to the physical properties of brittle, self-assembled zein networks through microbial transglutaminase crosslinking were investigated. The formation of crosslinked heteropolymers was also explored with networks containing zein and either soy or pea protein isolates as supplemented lysine sources. The observed SDS-PAGE bands did not show any evidence of zein crosslinking. Soy and pea isolates underwent extensive crosslinking on their own, but heteropolymers were not observed in multiprotein networks with zein. Despite the lack of crosslinking observed, rheological and textural analysis revealed that the enzymatic treatment of zein produced a weaker, more brittle structure. With no significant changes in secondary structure, determined through FTIR, the observed behaviour was primarily attributed to glutamine deamidation by microbial transglutaminase in the absence of sufficient lysine through changes to the hydrophobicity of the protein such that non-covalent bonding within network was modified.
Collapse
Affiliation(s)
- Kristin D Mattice
- Department of Food Science, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada.
| | - Alejandro G Marangoni
- Department of Food Science, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
10
|
Mattice KD, Marangoni AG. Functionalizing zein through antisolvent precipitation from ethanol or aetic acid. Food Chem 2020; 313:126127. [DOI: 10.1016/j.foodchem.2019.126127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 11/28/2022]
|
11
|
Akin PA, Bean SR, Smith BM, Tilley M. Factors Influencing Zein-Whole Sorghum Flour Dough Formation and Bread Quality. J Food Sci 2019; 84:3522-3534. [PMID: 31721217 DOI: 10.1111/1750-3841.14832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
Zein is known to able to form viscoelastic dough with wheat-like properties under certain conditions. Several studies have been conducted to explain the mechanism behind this ability and to improve the functionality and end-use quality of zein-based dough systems. However, most of this research has been conducted using zein in combination with isolated starches or high-starch flours. To investigate the production of additional zein-whole sorghum flour breads, experiments were conducted to determine factors impacting zein-whole sorghum flour dough and bread quality. Optimizing water levels, using defatted zein and/or sorghum flour, and increasing zein content in dough formulas were investigated as initial formulation steps. Of these factors, increasing zein content from 20% to 30% (flour weight basis) had the greatest impact, resulting in stronger zein-based dough and improved bread quality. Additives and zein treatments shown to impact zein functionality were then investigated for their effect of zein-whole sorghum flour breads. Mixing zein and whole sorghum flour with 0.5% hydrogen peroxide, 5% ethanol, or 3% hydroxypropyl methylcellulose resulted in improved dough strength and bread quality. Breads made from whole white sorghum flour had improved quality compared to zein-based breads made with black or high-tannin whole sorghum flour. PRACTICAL APPLICATION: Zein is known to be able to form wheat-like dough when mixed under the right conditions. Most of the research on zein-based dough and food products has used high-starch flours. This project investigated optimizing the production of zein-whole sorghum flour dough and bread as an alternative. Increasing the zein content in the formula and using additives including ethanol and HPMC produced breads from zein-whole sorghum flour that were like those made with zein and pure starch.
Collapse
Affiliation(s)
- Pervin Ari Akin
- Dept. of Grain Science and Industry, Kansas State Univ., Manhattan, KS, 66506, U.S.A.,Field Crops Central Research Inst., Gayret Mahallesi, 11, Şht. Cem Ersever Cd., Yenimahalle, Ankara, Turkey, 06170
| | - Scott R Bean
- Center for Grain and Animal Health Research, USDA-ARS, 1515 College Ave., Manhattan, KS, 66502, U.S.A
| | - Brennan M Smith
- School of Food Science, Univ. of Idaho, 875 Perimeter Dr, Moscow, ID, 83844, U.S.A
| | - Michael Tilley
- Center for Grain and Animal Health Research, USDA-ARS, 1515 College Ave, Manhattan, KS, 66502, U.S.A
| |
Collapse
|
12
|
Wang P, Hou C, Zhao X, Tian M, Gu Z, Yang R. Molecular characterization of water-extractable arabinoxylan from wheat bran and its effect on the heat-induced polymerization of gluten and steamed bread quality. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Taylor J, Taylor JRN. Making Kafirin, the Sorghum Prolamin, into a Viable Alternative Protein Source. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Janet Taylor
- Institute for Food, Nutrition and Well-being and Department of Food Science; University of Pretoria, Private Bag X20; Hatfield 0028 South Africa
| | - John R. N. Taylor
- Institute for Food, Nutrition and Well-being and Department of Food Science; University of Pretoria, Private Bag X20; Hatfield 0028 South Africa
| |
Collapse
|
14
|
Nguyen DD, Johnson SK, Clarke MW. Identification and Quantification of Dityrosine in Grain Proteins by Isotope Dilution Liquid Chromatography-Tandem Mass Spectrometry. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Dong S, Wang JM, Cheng LM, Lu YL, Li SH, Chen Y. Behavior of Zein in Aqueous Ethanol under Atmospheric Pressure Cold Plasma Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7352-7360. [PMID: 28759211 DOI: 10.1021/acs.jafc.7b02205] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects of atmospheric cold plasma (ACP) on zein in aqueous ethanol (80%, v/v) were investigated including particle size distribution, molecular structure, and content of free sulfhydryl (free-SH) group and disulfide bond, etc. The film-forming properties of zein films were also characterized. After ACP treatment, the particle size of zein aggregates showed a remarkable decrease and uniform particle distribution. There was a downward trend both in pH value and viscosity with the increasing ACP treatment intensity. Moreover, the increase of disulfide bonds concentration was suggested to be correlated to the compact structure strengthened by cross-linking between zein molecules. It was proved from SEM micrographs that plasma could significantly decrease the aggregation degree of zein micelles. There was a slight decrease of the peak intensity in UV and fluorescence spectra compared with native zein, indicating the bulk structure of zein solution had not been disrupted. The reinforced flexibility and tensile strength of zein films had been observed after treatment on film-forming solution. This study provided an experimental basis for the investigation on behavior of plasma-treated protein in solution.
Collapse
Affiliation(s)
- Shuang Dong
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Jian-Ming Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Li-Min Cheng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Yan-Li Lu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Shu-Hong Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Ye Chen
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| |
Collapse
|
16
|
Xiao J, Chen Y, Huang Q. Physicochemical properties of kafirin protein and its applications as building blocks of functional delivery systems. Food Funct 2017; 8:1402-1413. [DOI: 10.1039/c6fo01217e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unique physicochemical properties of kafirin highlight its potential as an attractive resource for gluten-free products and building blocks for functional delivery systems.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Food Science
- College of Food Science
- South China Agricultural University
- Guangzhou 510640
- China
| | - Yunjiao Chen
- Department of Food Science
- College of Food Science
- South China Agricultural University
- Guangzhou 510640
- China
| | - Qingrong Huang
- Department of Food Science
- Rutgers
- The State University of New Jersey
- New Brunswick
- USA
| |
Collapse
|
17
|
Formation of a viscoelastic dough from isolated total zein (α-, β- and γ-zein) using a glacial acetic acid treatment. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|