1
|
Saini DK, Chopra Y, Singh J, Sandhu KS, Kumar A, Bazzer S, Srivastava P. Comprehensive evaluation of mapping complex traits in wheat using genome-wide association studies. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:1. [PMID: 37309486 PMCID: PMC10248672 DOI: 10.1007/s11032-021-01272-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies (GWAS) are effectively applied to detect the marker trait associations (MTAs) using whole genome-wide variants for complex quantitative traits in different crop species. GWAS has been applied in wheat for different quality, biotic and abiotic stresses, and agronomic and yield-related traits. Predictions for marker-trait associations are controlled with the development of better statistical models taking population structure and familial relatedness into account. In this review, we have provided a detailed overview of the importance of association mapping, population design, high-throughput genotyping and phenotyping platforms, advancements in statistical models and multiple threshold comparisons, and recent GWA studies conducted in wheat. The information about MTAs utilized for gene characterization and adopted in breeding programs is also provided. In the literature that we surveyed, as many as 86,122 wheat lines have been studied under various GWA studies reporting 46,940 loci. However, further utilization of these is largely limited. The future breakthroughs in area of genomic selection, multi-omics-based approaches, machine, and deep learning models in wheat breeding after exploring the complex genetic structure with the GWAS are also discussed. This is a most comprehensive study of a large number of reports on wheat GWAS and gives a comparison and timeline of technological developments in this area. This will be useful to new researchers or groups who wish to invest in GWAS.
Collapse
Affiliation(s)
- Dinesh K. Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Yuvraj Chopra
- College of Agriculture, Punjab Agricultural University, Ludhiana, 141004 India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163 USA
| | - Anand Kumar
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, 202002 India
| | - Sumandeep Bazzer
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
2
|
Genome wide association study of the whiteness and colour related traits of flour and dough sheets in common wheat. Sci Rep 2021; 11:8790. [PMID: 33888831 PMCID: PMC8062544 DOI: 10.1038/s41598-021-88241-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/08/2021] [Indexed: 11/09/2022] Open
Abstract
Flour whiteness and colour are important factors that influence the quality of wheat flour and end-use products. In this study, a genome wide association study focusing on flour and dough sheet colour using a high density genetic map constructed with 90K single nucleotide polymorphism arrays in a panel of 205 elite winter wheat accessions was conducted in two different locations in 2 years. Eighty-six significant marker-trait associations (MTAs) were detected for flour whiteness and the brightness index (L* value), the redness index (a* value), and the yellowness index (b* value) of flour and dough sheets (P < 10-4) on homologous group 1, 2, 5 and 7, and chromosomes 3A, 3B, 4A, 6A and 6B. Four, three, eleven, eleven MTAs for the flour whiteness, L* value, a* value, b* value, and one MTA for the dough sheet L* value were identified in more than one environment. Based on MATs, some important new candidate genes were identified. Of these, two candidate genes, TraesCS5D01G004300 and Gsp-1D, for BS00000020_51 were found in wheat, relating to grain hardness. Other candidate genes were associated with proteins, the fatty acid biosynthetic process, the ketone body biosynthetic process, etc.
Collapse
|
3
|
Gao L, Meng C, Yi T, Xu K, Cao H, Zhang S, Yang X, Zhao Y. Genome-wide association study reveals the genetic basis of yield- and quality-related traits in wheat. BMC PLANT BIOLOGY 2021; 21:144. [PMID: 33740889 PMCID: PMC7980635 DOI: 10.1186/s12870-021-02925-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/11/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Identifying the loci and dissecting the genetic architecture underlying wheat yield- and quality-related traits are essential for wheat breeding. A genome-wide association study was conducted using a high-density 90 K SNP array to analyze the yield- and quality-related traits of 543 bread wheat varieties. RESULTS A total of 11,140 polymorphic SNPs were distributed on 21 chromosomes, including 270 significant SNPs associated with 25 yield- and quality-related traits. Additionally, 638 putative candidate genes were detected near the significant SNPs based on BLUP data, including three (TraesCS7A01G482000, TraesCS4B01G343700, and TraesCS6B01G295400) related to spikelet number per spike, diameter of the first internode, and grain volume. The three candidate genes were further analyzed using stage- and tissue- specific gene expression data derived from an RNA-seq analysis. These genes are promising candidates for enhancing yield- and quality-related traits in wheat. CONCLUSIONS The results of this study provide a new insight to understand the genetic basis of wheat yield and quality. Furthermore, the markers detected in this study may be applicable for marker-assisted selection in wheat breeding programs.
Collapse
Affiliation(s)
- Le Gao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Tengfei Yi
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Ke Xu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Huiwen Cao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Shuhua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Xueju Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, Hebei, China.
| | - Yong Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, Hebei, China.
| |
Collapse
|
4
|
Khlestkin VK, Erst TV, Rozanova IV, Efimov VM, Khlestkina EK. Genetic loci determining potato starch yield and granule morphology revealed by genome-wide association study (GWAS). PeerJ 2020; 8:e10286. [PMID: 33240629 PMCID: PMC7664467 DOI: 10.7717/peerj.10286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/10/2020] [Indexed: 11/20/2022] Open
Abstract
Background It is well-documented that (bio)chemical reaction capacity of raw potato starch depends on crystallinity, morphology and other chemical and physical properties of starch granules, and these properties are closely related to gene functions. Preparative yield, amylose/amylopectin content, and phosphorylation of potato tuber starch are starch-related traits studied at the genetic level. In this paper, we perform a genome-wide association study using a 22K SNP potato array to identify for the first time genomic regions associated with starch granule morphology and to increase number of known genome loci associated with potato starch yield. Methods A set of 90 potato (Solanum tuberosum L.) varieties from the ICG “GenAgro” collection (Novosibirsk, Russia) was harvested, 90 samples of raw tuber starch were obtained, and DNA samples were isolated from the skin of the tubers. Morphology of potato tuber starch granules was evaluated by optical microscopy and subsequent computer image analysis. A set of 15,214 scorable SNPs was used for the genome-wide analysis. In total, 53 SNPs were found to be significantly associated with potato starch morphology traits (aspect ratio, roundness, circularity, and the first bicomponent) and starch yield-related traits. Results A total of 53 novel SNPs was identified on potato chromosomes 1, 2, 4, 5, 6, 7, 9, 11 and 12; these SNPs are associated with tuber starch preparative yield and granule morphology. Eight SNPs are situated close to each other on the chromosome 1 and 19 SNPs—on the chromosome 2, forming two DNA regions—potential QTLs, regulating aspect ratio and roundness of the starch granules. Thirty-seven of 53 SNPs are located in protein-coding regions. There are indications that granule shape may depend on starch phosphorylation processes. The GWD gene, which is known to regulate starch phosphorylation—dephosphorylation, participates in the regulation of a number of morphological traits, rather than one specific trait. Some significant SNPs are associated with membrane and plastid proteins, as well as DNA transcription and binding regulators. Other SNPs are related to low-molecular-weight metabolite synthesis, and may be associated with flavonoid biosynthesis and circadian rhythm-related metabolic processes. The preparative yield of tuber starch is a polygenic trait that is associated with a number of SNPs from various regions and chromosomes in the potato genome.
Collapse
Affiliation(s)
- Vadim K Khlestkin
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Science Center of Animal Husbandry, Saint-Petersburg, Russia
| | - Tatyana V Erst
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Irina V Rozanova
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,The N.I. Vavilov Federal Research Center All-Russian Institute of Plant Genetic Resources (VIR), Saint-Petersburg, Russia
| | - Vadim M Efimov
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Elena K Khlestkina
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,The N.I. Vavilov Federal Research Center All-Russian Institute of Plant Genetic Resources (VIR), Saint-Petersburg, Russia
| |
Collapse
|
5
|
Navrotskyi S, Belamkar V, Baenziger PS, Rose DJ. Insights into the Genetic Architecture of Bran Friability and Water Retention Capacity, Two Important Traits for Whole Grain End-Use Quality in Winter Wheat. Genes (Basel) 2020; 11:E838. [PMID: 32717821 PMCID: PMC7466047 DOI: 10.3390/genes11080838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
Bran friability (particle size distribution after milling) and water retention capacity (WRC) impact wheat bran functionality in whole grain milling and baking applications. The goal of this study was to identify genomic regions and underlying genes that may be responsible for these traits. The Hard Winter Wheat Association Mapping Panel, which comprised 299 lines from breeding programs in the Great Plains region of the US, was used in a genome-wide association study. Bran friability ranged from 34.5% to 65.9% (median, 51.1%) and WRC ranged from 159% to 458% (median, 331%). Two single-nucleotide polymorphisms (SNPs) on chromosome 5D were significantly associated with bran friability, accounting for 11-12% of the phenotypic variation. One of these SNPs was located within the Puroindoline-b gene, which is known for influencing endosperm texture. Two SNPs on chromosome 4A were tentatively associated with WRC, accounting for 4.6% and 4.4% of phenotypic variation. The favorable alleles at the SNP sites were present in only 15% (friability) and 34% (WRC) of lines, indicating a need to develop new germplasm for these whole-grain end-use quality traits. Validation of these findings in independent populations will be useful for breeding winter wheat cultivars with improved functionality for whole grain food applications.
Collapse
Affiliation(s)
- Sviatoslav Navrotskyi
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Vikas Belamkar
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - P. Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Devin J. Rose
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
6
|
Genotyping by multiplexed sequencing (GMS): A customizable platform for genomic selection. PLoS One 2020; 15:e0229207. [PMID: 32357171 PMCID: PMC7194356 DOI: 10.1371/journal.pone.0229207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/31/2020] [Indexed: 12/21/2022] Open
Abstract
As genotyping technologies continue to evolve, so have their throughput and multiplexing capabilities. In this study, we demonstrate a new PCR-based genotyping technology that multiplexes thousands of single nucleotide polymorphism (SNP) markers with high-throughput capabilities in a simple protocol using a two-step PCR approach. The bioinformatic pipeline is user friendly and yields results that are intuitive to interpret. This method was tested on two recombinant inbred line (RIL) populations that had previous genotyping data from the Illumina Infinium assay for Triticum aestivum L. and the two data sets were found to be 100% in agreement. The genotyping by multiplexed sequencing (GMS) protocol multiplexes 1,656 wheat SNP markers, 207 syntenic barley SNP markers, and 49 known informative markers, which generate a possible 2,433 data points (including homoeoalleles and paralogs). This genotyping approach has the flexibility of being sequenced on either the Ion Torrent or Illumina next generation sequencing (NGS) platforms. Products are the result of direct sequencing and are therefore more reliable than scatter plot analysis which is the output of other genotyping methods such as the Illumina Infinium assay, komeptitive allele specific PCR and other like technologies.
Collapse
|
7
|
Jamil M, Ali A, Gul A, Ghafoor A, Napar AA, Ibrahim AMH, Naveed NH, Yasin NA, Mujeeb-Kazi A. Genome-wide association studies of seven agronomic traits under two sowing conditions in bread wheat. BMC PLANT BIOLOGY 2019; 19:149. [PMID: 31003597 PMCID: PMC6475106 DOI: 10.1186/s12870-019-1754-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/02/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Wheat is a cool seasoned crop requiring low temperature during grain filling duration and therefore increased temperature causes significant yield reduction. A set of 125 spring wheat genotypes from International Maize and Wheat Improvement Centre (CIMMYT-Mexico) was evaluated for phenological and yield related traits at three locations in Pakistan under normal sowing time and late sowing time for expose to prolonged high temperature. With the help of genome-wide association study using genotyping-by-sequencing, marker trait associations (MTAs) were observed separately for the traits under normal and late sown conditions. RESULTS Significant reduction ranging from 9 to 74% was observed in all traits under high temperature. Especially 30, 25, 41 and 66% reduction was observed for days to heading (DH), plant height (PH), spikes per plant (SPP) and yield respectively. We identified 55,954 single nucleotide polymorphisms (SNPs) using genotyping by sequencing of these 125 hexaploid spring wheat genotypes and conducted genome-wide association studies (GWAS) for days to heading (DH), grain filled duration (GFD), plant height (PH), spikes per plant (SPP), grain number per spike (GNS), thousand kernel weight (TKW) and grain yield per plot (GY). Genomic regions identified through GWAS explained up to 13% of the phenotypic variance, on average. A total of 139 marker-trait associations (MTAs) across three wheat genomes (56 on genome A, 55 on B and 28 on D) were identified for all the seven traits studied. For days to heading, 20; grain filled duration, 21; plant height, 23; spikes per plant, 13; grain numbers per spike, 8; thousand kernel weight, 21 and for grain yield, 33 MTAs were detected under normal and late sown conditions. CONCLUSIONS This study identifies the essential resource of genetics research and underpins the chromosomal regions of seven agronomic traits under normal and high temperature. Significant relationship was observed between the number of favored alleles and trait observations. Fourteen protein coding genes with their respective annotations have been searched with the sequence of seven MTAs which were identified in this study. These findings will be helpful in the development of a breeder friendly platform for the selection of high yielding wheat lines at high temperature areas.
Collapse
Affiliation(s)
- Muhammad Jamil
- Department of Botany, University of Sargodha, Sargodha, Punjab Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Punjab Pakistan
| | - Alvina Gul
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Abdul Ghafoor
- Plant Genetic Resources Institute (PGRI), National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Abdul Aziz Napar
- Institute of Plant Sciences, University of Sind Jamshoro, Sind, Pakistan
| | - Amir M. H. Ibrahim
- Soil and Crop Sciences Department, Texas A&M University, College Station, USA
| | - Naima Huma Naveed
- Department of Botany, University of Sargodha, Sargodha, Punjab Pakistan
| | | | | |
Collapse
|
8
|
Martinez SA, Godoy J, Huang M, Zhang Z, Carter AH, Garland Campbell KA, Steber CM. Genome-Wide Association Mapping for Tolerance to Preharvest Sprouting and Low Falling Numbers in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:141. [PMID: 29491876 PMCID: PMC5817628 DOI: 10.3389/fpls.2018.00141] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/25/2018] [Indexed: 05/19/2023]
Abstract
Preharvest sprouting (PHS), the germination of grain on the mother plant under cool and wet conditions, is a recurring problem for wheat farmers worldwide. α-amylase enzyme produced during PHS degrades starch resulting in baked good with poor end-use quality. The Hagberg-Perten Falling Number (FN) test is used to measure this problem in the wheat industry, and determines how much a farmer's wheat is discounted for PHS damage. PHS tolerance is associated with higher grain dormancy. Thus, breeding programs use germination-based assays such as the spike-wetting test to measure PHS susceptibility. Association mapping identified loci associated with PHS tolerance in U.S. Pacific Northwest germplasm based both on FN and on spike-wetting test data. The study was performed using a panel of 469 white winter wheat cultivars and elite breeding lines grown in six Washington state environments, and genotyped for 15,229 polymorphic markers using the 90k SNP Illumina iSelect array. Marker-trait associations were identified using the FarmCPU R package. Principal component analysis was directly and a kinship matrix was indirectly used to account for population structure. Nine loci were associated with FN and 34 loci associated with PHS based on sprouting scores. None of the QFN.wsu loci were detected in multiple environments, whereas six of the 34 QPHS.wsu loci were detected in two of the five environments. There was no overlap between the QTN detected based on FN and PHS, and there was little correlation between the two traits. However, both traits appear to be PHS-related since 19 of the 34 QPHS.wsu loci and four of the nine QFN.wsu loci co-localized with previously published dormancy and PHS QTL. Identification of these loci will lead to a better understanding of the genetic architecture of PHS and will help with the future development of genomic selection models.
Collapse
Affiliation(s)
- Shantel A. Martinez
- Molecular Plant Sciences, Washington State University, Pullman, WA, United States
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Jayfred Godoy
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Meng Huang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Zhiwu Zhang
- Molecular Plant Sciences, Washington State University, Pullman, WA, United States
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Arron H. Carter
- Molecular Plant Sciences, Washington State University, Pullman, WA, United States
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Kimberly A. Garland Campbell
- Molecular Plant Sciences, Washington State University, Pullman, WA, United States
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- USDA-ARS Wheat Health, Genetics, and Quality Research Unit, Washington State University, Pullman, WA, United States
| | - Camille M. Steber
- Molecular Plant Sciences, Washington State University, Pullman, WA, United States
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- USDA-ARS Wheat Health, Genetics, and Quality Research Unit, Washington State University, Pullman, WA, United States
| |
Collapse
|