1
|
Ma M, Gu Z, Cheng L, Li Z, Li C, Hong Y. Effect of hydrocolloids on starch digestion: A review. Food Chem 2024; 444:138636. [PMID: 38310781 DOI: 10.1016/j.foodchem.2024.138636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Rapidly digestible starch can increase postprandial blood sugar rapidly, which can be overcome by hydrocolloids. The paper aims to review the effect of hydrocolloids on starch digestion. Hydrocolloids used to reduce starch digestibility are mostly polysaccharides like xanthan gum, pectin, β-glucan, and konjac glucomannan. Their effectiveness is related to their source and structure, mixing mode of hydrocolloid/starch, physical treatment, and starch processing. The mechanisms of hydrocolloid action include increased system viscosity, inhibition of enzymatic activity, and reduced starch accessibility to enzymes. Reduced starch accessibility to enzymes involves physical barrier and structural orderliness. In the future, physical treatments and intensity used for stabilizing hydrocolloid/starch complex, risks associated with different doses of hydrocolloids, and the development of related clinical trials should be focused on. Besides, investigating the effect of hydrocolloids on starch should be conducted in the context of practical commercial applications rather than limited to the laboratory level.
Collapse
Affiliation(s)
- Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314050, China.
| |
Collapse
|
2
|
Lu C, Zhao Z, Huang G, Liu J, Ye F, Chen J, Ming J, Zhao G, Lei L. The contribution of cell wall integrity to gastric emptying and in vitro starch digestibility and fermentation performance of highland barley foods. Food Res Int 2023; 169:112912. [PMID: 37254345 DOI: 10.1016/j.foodres.2023.112912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Studies have shown that the structure, composition, and bioavailability of compounds in whole grains are affected by processing and the role of cells walls. In this study, the effects of different processing methods on highland barley, one of the mostly widely produced whole grains worldwide, were investigated. The processing methods applied were flaking-boiling (HB flake), sand-roasting (Puffed HB), and sand-roasting-milling (Tsamba). Results showed Puffed HB and Tsamba had higher levels of damaged starch content, starch short-range molecular order, and relative crystallinity than HB flake. The half-time of gastric emptying (t1/2) was the slowest for Tsamba (132.3 min) compared to HB flake (122.5 min) and Puffed HB (84.0 min), indicating the slowest gastric emptying rate, which could be attributed to its high viscosity of gastric digesta. After in vitro gastroduodenal digestion, Puffed HB exhibited the lowest starch digestibility and the least amount of β-glucan due to its less damaged cellular structure. Furthermore, Puffed HB resulted in a 21% and 18% higher in vitro production of total short-chain fatty acids than Tsamba and HB flake, respectively. Besides, undigested starch of Puffed HB after in vitro gastroduodenal digestion delayed in vitro fecal fermentation of β-glucan. Our study provided insight into the potential mechanisms of how cell wall integrity affected the gastric emptying, in vitro starch digestibility, and in vitro fecal fermentation of highland barley foods.
Collapse
Affiliation(s)
- Chun Lu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Zixuan Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Guobao Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, PR China
| | - Jia Liu
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, PR China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jia Chen
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Lin R, Zhang J, Xu R, Yuan C, Guo L, Liu P, Fang Y, Cui B. Developments in molecular docking technologies for application of polysaccharide-based materials: A review. Crit Rev Food Sci Nutr 2023; 64:8540-8552. [PMID: 37077154 DOI: 10.1080/10408398.2023.2200833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
With the increasing pollution of the planet, the search for natural multifunctional alternatives to petroleum-based plastics has assumed to be a great important proposition. Polysaccharides, an inexhaustible natural resource with good biocompatibility as well as mechanical properties, are considered as an ideal alternative to petroleum-based materials. However, blind experimentation and development will inevitably lead to waste of raw materials and contamination of reagents. Therefore, researchers desire a technology which can assist in predicting and screening experimental materials at the higher level. Molecular docking simulations, an emerging computer technology that can effectively predict the structure of interactions between molecules and analyze the optimal conformation, are a common aid for materials and drug design. In this review, we describe the origins and development of molecular docking techniques, mainly performed an overview of various molecular docking software on their applications in the field of different polysaccharide materials.
Collapse
Affiliation(s)
- Ruikang Lin
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jihui Zhang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Ruoxuan Xu
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chao Yuan
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Li Guo
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Pengfei Liu
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Yishan Fang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Bo Cui
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
4
|
Chen N, Gao HX, He Q, Zeng WC. Insight into property, function, and digestion of potato starch modified by phenolic compounds with varying structures. J Food Sci 2023; 88:962-976. [PMID: 36717378 DOI: 10.1111/1750-3841.16479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/16/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023]
Abstract
Influences of structural characteristics of phenolic compounds on the properties of potato starch were investigated, and their effects on the quality, function, and digestion of potato starch noodles were further determined. All testing phenolic compounds (including protocatechuic acid [PA], naringin [NA], and tannic acid [TA]) exhibited the significant capability to modify the thermal properties, rheological properties, and enzymatic hydrolysis of potato starch. The high amount of hydroxyl groups, the presence of glycoside structure, appropriate molecular size, and steric hindrance were beneficial to enhance their effects on potato starch. In addition, by changing the microstructure of starch hydrocolloids, PA, NA, and TA could affect the color, texture properties, and cooking properties of potato starch noodles. Meanwhile, PA and TA could endow potato starch noodles with remarkable antioxidant activity. Furthermore, the in vitro digestion of potato starch noodles was obviously inhibited by phenolic compounds, especially for TA. All present results suggested that structural characteristics of phenolic compounds affected their interaction affinity and combination degree with potato starch molecules, so as to modify the properties of starch and affect the quality, function, and digestion of starchy foods, which showed the valuable applications in food and chemical industries. PRACTICAL APPLICATION: The property, function, and digestion characteristics of potato starch show the significant effects on the quality of potato starch products in food industry. In present study, the thermal properties, rheological properties, and enzymatic hydrolysis of potato starch were modified by different phenolic compounds (including protocatechuic acid, naringin, and tannic acid) in varying degrees, whereas the quality, antioxidant activity, and digestion characteristic of potato starch noodles were modified by phenolic compounds with different structures. All results showed the potential application and interaction regularities of phenolic compounds as natural additives for potato starch processing in food industry.
Collapse
Affiliation(s)
- Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, P. R. China
| | - Hao-Xiang Gao
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, P. R. China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, P. R. China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, P. R. China.,The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
5
|
Yi C, Qiang N, Zhu H, Xiao Q, Li Z. Extrusion processing: A strategy for improving the functional components, physicochemical properties, and health benefits of whole grains. Food Res Int 2022; 160:111681. [DOI: 10.1016/j.foodres.2022.111681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/04/2022]
|
6
|
Monro J, Mishra S. In Vitro Digestive Analysis of Digestible and Resistant Starch Fractions, with Concurrent Glycemic Index Determination, in Whole Grain Wheat Products Minimally Processed for Reduced Glycaemic Impact. Foods 2022; 11:foods11131904. [PMID: 35804723 PMCID: PMC9265537 DOI: 10.3390/foods11131904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Eight wheat products differing in texture (porridge vs. bread), grain fineness (fine, kibbled, intact), and cooking (raw vs. cooked), with pre-measured glycaemic indexes (GI), were analysed by in vitro amylolytic digestion to determine effects of processing to reduce GI on quantities of starch fractions differing in digestibility. The accuracy and precision of the in vitro analysis was assessed from its ability to concurrently predict clinical GI. In porridges, kernel intactness and lack of cooking reduced GI while increasing Type 1 (inaccessible) and Type 2 (ungelatinised) resistant starch. Porridge in vitro GI values (GIiv), calculated from the area under in vitro digestion curves minus estimated blood glucose disposal, were: raw fine, 26.3; raw kibbled, 12.6; cooked fine, 63.9; cooked kibbled, 44.1; and correlated closely with clinical GI values (R2 = 0.97). In bread, the negative association of kernel intactness and resistant starch with GI was seen in vitro but not in vivo. Bread GIiv values were: roller milled flour, 67.4; stoneground flour 61.1; kibbled grain, 53.0; kibbled + intact kernel, 49.5; but correlation with clinical values was low (R2 = 0.47), and variability in the clinical results was high (clinical CV = 72.5%, in vitro CV = 3.7%). Low glycaemic potency of wheat by minimal processing was achieved by maintaining particle size, avoiding hydrothermal treatment, avoiding crushing and using a food matrix requiring little chewing for ingestion. Use of in vitro digestive analysis for high precision measurement of starch fractions with potential secondary health benefits was validated by accurate concurrent prediction of the glycaemic index but needed to account for effects of chewing.
Collapse
Affiliation(s)
- John Monro
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand;
- Riddet Institute, University Avenue, Fitzherbert, Palmerston North 4474, New Zealand
- Correspondence:
| | - Suman Mishra
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand;
| |
Collapse
|
7
|
Rong L, Shen M, Wen H, Xiao W, Li J, Xie J. Eggshell powder improves the gel properties and microstructure of pea starch-Mesona chinensis Benth polysaccharide gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Dong J, Huang L, Chen W, Zhu Y, Dun B, Shen R. Effect of Heat-Moisture Treatments on Digestibility and Physicochemical Property of Whole Quinoa Flour. Foods 2021; 10:3042. [PMID: 34945593 PMCID: PMC8701148 DOI: 10.3390/foods10123042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
The starch digestion processing of whole grain foods is associated with its health benefits in improving insulin resistance. This study modified the digestibility of whole quinoa flour (WQ) via heat-moisture treatment (HMT), HMT combined with pullulanase (HMT+P), HMT combined with microwave (HMT+M), and HMT combined with citric acids (HMT+A), respectively. Results showed that all the treatments significantly increased (p < 0.05) the total dietary fiber (TDF) content, amylose content, and resistant starch (RS) content, however, significantly decreased (p < 0.05) the amylopectin content and rapidly digestible starch (RDS) content of WQ. HMT+P brought the highest TDF content (15.3%), amylose content (31.24%), and RS content (15.71%), and the lowest amylopecyin content (30.02%) and RDS content (23.65%). HMT+M brought the highest slowly digestible starch (SDS) content (25.09%). The estimated glycemic index (eGI) was respectively reduced from 74.36 to 70.59, 65.87, 69.79, and 69.12 by HMT, HMT+P, HMT+M, and HMT+A. Moreover, a significant and consistent reduction in the heat enthalpy (ΔH) of WQ was observed (p < 0.05), after four treatments. All these effects were caused by changes in the starch structure, as evidenced by the observed conjunction of protein and starch by a confocal laser scanning microscope (CLSM), the decrease in relative crystallinity, and transformation of starch crystal.
Collapse
Affiliation(s)
- Jilin Dong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (J.D.); (L.H.); (W.C.); (Y.Z.)
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Lu Huang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (J.D.); (L.H.); (W.C.); (Y.Z.)
| | - Wenwen Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (J.D.); (L.H.); (W.C.); (Y.Z.)
| | - Yingying Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (J.D.); (L.H.); (W.C.); (Y.Z.)
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baoqing Dun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruiling Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (J.D.); (L.H.); (W.C.); (Y.Z.)
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
9
|
|
10
|
Qin W, Ying W, Hamaker B, Zhang G. Slow digestion-oriented dietary strategy to sustain the secretion of GLP-1 for improved glucose homeostasis. Compr Rev Food Sci Food Saf 2021; 20:5173-5196. [PMID: 34350681 DOI: 10.1111/1541-4337.12808] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Dysregulated glucose metabolism is associated with many chronic diseases such as obesity and type 2 diabetes mellitus (T2DM), and strategies to restore and maintain glucose homeostasis are essential to health. The incretin hormone of glucagon-like peptide-1 (GLP-1) is known to play a critical role in regulating glucose homeostasis and dietary nutrients are the primary stimuli to the release of intestinal GLP-1. However, the GLP-1 producing enteroendocrine L-cells are mainly distributed in the distal region of the gastrointestinal tract where there are almost no nutrients to stimulate the secretion of GLP-1 under normal situations. Thus, a dietary strategy to sustain the release of GLP-1 was proposed, and the slow digestion property and dipeptidyl peptidase IV (DPP-IV) inhibitory activity of food components, approaches to reduce the rate of food digestion, and mechanisms to sustain the release of GLP-1 were reviewed. A slow digestion-oriented dietary approach through encapsulation of nutrients, incorporation of viscous dietary fibers, and enzyme inhibitors of phytochemicals in a designed whole food matrix will be implemented to efficiently reduce the digestion rate of food nutrients, potentiate their distal deposition and a sustained secretion of GLP-1, which will be beneficial to improved glucose homeostasis and health.
Collapse
Affiliation(s)
- Wangyan Qin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wang Ying
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bruce Hamaker
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Abstract
As the prevalence of obesity and diabetes has continued to increase rapidly in recent years, dietary approaches to regulating glucose homeostasis have gained more attention. Starch is the major source of glucose in the human diet and can have diverse effects, depending on its rate and extent of digestion in the small intestine, on postprandial glycemic response, which over time is associated with blood glucose abnormalities, insulin sensitivity, and even appetitive response and food intake. The classification of starch bioavailability into rapidly digestible starch, slowly digestible starch, and resistant starch highlights the nutritional values of different starches. As starch is the main structure-building macroconstituent of foods, its bioavailability can be manipulated by selection of food matrices with varying degrees of susceptibility to amylolysis and food processing to retain or develop new matrices. In this review, the food factors that may modulate starch bioavailability, with a focus on food matrices, are assessed for a better understanding of their potential contribution to human health. Aspects affecting starch nutritional properties as well as production strategies for healthy foods are also reviewed, e.g., starch characteristics (different type, structure, and modification), food physical properties (food form, viscosity, and integrity), food matrix interactions (lipid, protein, nonstarch polysaccharide, phytochemicals, organic acid, and enzyme inhibitor), and food processing (milling, cooking, and storage).
Collapse
Affiliation(s)
- Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China;
| | - Bruce R Hamaker
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; .,Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, Indiana 47907-1160, USA;
| |
Collapse
|
12
|
Influence of solar drying and storage conditions on microstructure, crack propagation and nano-hardness of paddy and wheat. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Luo K, Wang X, Zhang G. Starch and β-glucan in a whole-grain-like structural form improve hepatic insulin sensitivity in diet-induced obese mice. Food Funct 2019; 10:5091-5101. [DOI: 10.1039/c9fo00798a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
WGLSF improves hepatic insulin resistance and glucose homeostasis in diet-induced obese mice.
Collapse
Affiliation(s)
- Kaiyun Luo
- Key Laboratory of Food Science and Technology School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Xufeng Wang
- Institute of Biotechnology
- College of Biological Science and Engineering
- Fuzhou University
- Fuzhou
- China
| | - Genyi Zhang
- Key Laboratory of Food Science and Technology School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| |
Collapse
|
14
|
Do DT, Singh J, Oey I, Singh H. Biomimetic plant foods: Structural design and functionality. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Nguyen GT, Sopade PA. Modeling Starch Digestograms: Computational Characteristics of Kinetic Models for in vitro Starch Digestion in Food Research. Compr Rev Food Sci Food Saf 2018; 17:1422-1445. [PMID: 33350160 DOI: 10.1111/1541-4337.12384] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022]
Abstract
Starch digestion is mostly investigated with in vitro techniques, and time-course measurements are common. These yield digestograms that are modeled by theoretical, semitheoretical, and empirical kinetic equations, many of which are reviewed here. The Duggleby model has Michaelis-Menten functions, and its dependent variable is on both sides of the equation with no apparent parameter for maximum digestible starch (D∞ ). The Gaouar and Peleg models are equivalent. They predict both the initial digestible starch (D0 ) and D∞ , and an average digestion rate, but they can reveal "biratial" digestions. The first-order kinetic model exhibits diverse predictabilities and, when linearized, D∞ is sometimes equated to 100 g/100 g dry starch (100%), it yields an average rate of digestion and can predict negative D0 . The log of slope (LOS) model is unique in revealing the rapid-to-slow digestion rate phenomenon, but without guidelines to identify such. The LOS model does not sometimes use all the digestogram data, can predict D∞ greater than 100%, and returns zero digestion rate for some digestograms. However, some starchy materials exhibit a slow-to-rapid digestion rate phenomenon, as demonstrated with an example. The modified first-order kinetic model uses all the digestogram data with practical constraints (D0 ≥ 0 g/100 g dry starch; D∞ ≤ 100 g/100 g dry starch), describes all digestograms, and yields an average digestion rate, but it can also be used for "biratial" digestions. In addition, the logistic and Weibull models are discussed. Using some published data, the computational characteristics of these commonly used models are presented with objective parameters to guide choices.
Collapse
Affiliation(s)
- Giang T Nguyen
- Dept. of Animal Husbandry and Veterinary, Faculty of Agriculture and Natural Resources, An Giang Univ., Long Xuyen City, An Giang Province, Vietnam
| | - Peter A Sopade
- Dept. of Food Science and Engineering, School of Agricultural Sciences, Xichang Univ., Xichang, Sichuan Province, 615013, China.,Food Process Engineering Consultants, Abeokuta Cottage, Tia Lane, Forest Lake, QLD 4078, Australia
| |
Collapse
|
16
|
Luo K, Wang X, Zhang G. The anti-obesity effect of starch in a whole grain-like structural form. Food Funct 2018; 9:3755-3763. [DOI: 10.1039/c8fo00602d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anti-obesity effect of starch in a whole grain-like structural form.
Collapse
Affiliation(s)
- Kaiyun Luo
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Xufeng Wang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| |
Collapse
|