1
|
Fan X, Jiang P, He Y, Zhang X, Yu G, Zhou M, Zhang P. qTaHa-5DL: another major QTL regulating wheat grain hardness. BMC PLANT BIOLOGY 2024; 24:1015. [PMID: 39465366 PMCID: PMC11514806 DOI: 10.1186/s12870-024-05731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Grain hardness has important effects on grain quality and the end-use of wheat. In this study, a collection of 103 common wheat germplasms and a DH population of 194 lines were used to identify new quantitative trait loci (QTL) for grain hardness. Two stable genetic loci on chromosome 5D were detected under different locations and years with one of them being the Ha locus on 5DS where the major gene Puroindolines for wheat grain hardness is located. Another locus of qTaHa-5DL also showed a significant impact on grain hardness index (HI) with HI increasing from ~ 20 to ~ 45 and hardness type changing from soft to mixed when Puroindolines are wild type. A kompetitive allele-specific PCR (KASP) marker for qTaHa-5DL was developed and the effectiveness of the QTL was confirmed in 184 breeding lines with the marker K-Ha5DL dividing wheat into two distinct categories. This new QTL can be effectively used to select soft or medium hard wheat.
Collapse
Affiliation(s)
- Xiangyun Fan
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, 210014, China
| | - Peng Jiang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, 210014, China
| | - Yi He
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, 210014, China
| | - Xu Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Guihong Yu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia.
| | - Peng Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, 210014, China.
| |
Collapse
|
2
|
Aoun M, Orenday-Ortiz JM, Brown K, Broeckling C, Morris CF, Kiszonas AM. Quantitative proteomic analysis of super soft kernel texture in soft white spring wheat. PLoS One 2023; 18:e0289784. [PMID: 37651390 PMCID: PMC10470886 DOI: 10.1371/journal.pone.0289784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
Super soft kernel texture is associated with superior milling and baking performance in soft wheat. To understand the mechanism underlying super soft kernel texture, we studied proteomic changes between a normal soft and a super soft during kernel development. The cultivar 'Alpowa', a soft white spring wheat, was crossed to a closely related super soft spring wheat line 'BC2SS163' to produce F6 recombinant inbred lines (RILs). Four normal soft RILs and four super soft RILs along with the parents were selected for proteomic analysis. Alpowa and the normal soft RILs showed hardness indices of 20 to 30, whereas BC2SS163 and the super soft RILs showed hardness indices of -2 to -6. Kernels were collected from normal soft and super soft genotypes at 7 days post anthesis (dpa), 14 dpa, 28 dpa, and maturity and were subject to quantitative proteomic analysis. Throughout kernel development, 175 differentially abundant proteins (DAPs) were identified. Most DAPs were observed at 7 dpa, 14 dpa, and 28 dpa. Of the 175 DAPs, 32 had higher abundance in normal soft wheat, whereas 143 DAPs had higher abundance in super soft wheat. A total of 18 DAPs were associated with carbohydrate metabolism and five DAPs were associated with lipids. The gene TraesCS4B02G091100.1 on chromosome arm 4BS, which encodes for sucrose-phosphate synthase, was identified as a candidate gene for super soft kernel texture in BC2SS163. This study enhanced our understanding of the mechanism underlying super soft kernel texture in soft white spring wheat.
Collapse
Affiliation(s)
- Meriem Aoun
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Jose M. Orenday-Ortiz
- Firestone Pacific Foods, Vancouver, Washington, United States of America
- Formerly School of Food Science, Washington State University, Pullman, Washington, United States of America
| | - Kitty Brown
- Analytical Resources Core, Colorado State University, Fort Collins, Colorado, United States of America
| | - Corey Broeckling
- Analytical Resources Core, Colorado State University, Fort Collins, Colorado, United States of America
| | - Craig F. Morris
- USDA-ARS Western Wheat & Pulse Quality Laboratory, Washington State University, Pullman, Washington, United States of America
| | - Alecia M. Kiszonas
- USDA-ARS Western Wheat & Pulse Quality Laboratory, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
3
|
Subedi M, Ghimire B, Bagwell JW, Buck JW, Mergoum M. Wheat end-use quality: State of art, genetics, genomics-assisted improvement, future challenges, and opportunities. Front Genet 2023; 13:1032601. [PMID: 36685944 PMCID: PMC9849398 DOI: 10.3389/fgene.2022.1032601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Wheat is the most important source of food, feed, and nutrition for humans and livestock around the world. The expanding population has increasing demands for various wheat products with different quality attributes requiring the development of wheat cultivars that fulfills specific demands of end-users including millers and bakers in the international market. Therefore, wheat breeding programs continually strive to meet these quality standards by screening their improved breeding lines every year. However, the direct measurement of various end-use quality traits such as milling and baking qualities requires a large quantity of grain, traits-specific expensive instruments, time, and an expert workforce which limits the screening process. With the advancement of sequencing technologies, the study of the entire plant genome is possible, and genetic mapping techniques such as quantitative trait locus mapping and genome-wide association studies have enabled researchers to identify loci/genes associated with various end-use quality traits in wheat. Modern breeding techniques such as marker-assisted selection and genomic selection allow the utilization of these genomic resources for the prediction of quality attributes with high accuracy and efficiency which speeds up crop improvement and cultivar development endeavors. In addition, the candidate gene approach through functional as well as comparative genomics has facilitated the translation of the genomic information from several crop species including wild relatives to wheat. This review discusses the various end-use quality traits of wheat, their genetic control mechanisms, the use of genetics and genomics approaches for their improvement, and future challenges and opportunities for wheat breeding.
Collapse
Affiliation(s)
- Madhav Subedi
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin Campus, Griffin, GA, United States
| | - Bikash Ghimire
- Department of Plant Pathology, University of Georgia, Griffin Campus, Griffin, GA, United States
| | - John White Bagwell
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin Campus, Griffin, GA, United States
| | - James W. Buck
- Department of Plant Pathology, University of Georgia, Griffin Campus, Griffin, GA, United States
| | - Mohamed Mergoum
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA, United States
| |
Collapse
|
4
|
Fan X, Liu X, Feng B, Zhou Q, Deng G, Long H, Cao J, Guo S, Ji G, Xu Z, Wang T. Construction of a novel Wheat 55 K SNP array-derived genetic map and its utilization in QTL mapping for grain yield and quality related traits. Front Genet 2022; 13:978880. [PMID: 36092872 PMCID: PMC9462458 DOI: 10.3389/fgene.2022.978880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Wheat is one of the most important staple crops for supplying nutrition and energy to people world. A new genetic map based on the Wheat 55 K SNP array was constructed using recombinant inbred lines derived from a cross between Zhongkemai138 and Kechengmai2 to explore the genetic foundation for wheat grain features. This new map covered 2,155.72 cM across the 21 wheat chromosomes with 11,455 markers. And 2,846 specific markers for this genetic map and 148 coincident markers among different maps were documented, which was helpful for improving and updating wheat genetic and genomic information. Using this map, a total of 68 additive QTLs and 82 pairs of epistatic QTLs were detected for grain features including yield, nutrient composition, and quality-related traits by QTLNetwork 2.1 and IciMapping 4.1 software. Fourteen additive QTLs and one pair of epistatic QTLs could be detected by both software programs and thus regarded as stable QTLs here, all of which explained higher phenotypic variance and thus could be utilized for wheat grain improvement. Additionally, thirteen additive QTLs were clustered into three genomic intervals (C4D.2, C5D, and C6D2), each of which had at least two stable QTLs. Among them, C4D.2 and C5D have been attributed to the famous dwarfing gene Rht2 and the hardness locus Pina, respectively, while endowed with main effects on eight grain yield/quality related traits and epistatically interacted with each other to control moisture content, indicating that the correlation of involved traits was supported by the pleotropic of individual genes but also regulated by the gene interaction networks. Additionally, the stable additive effect of C6D2 (QMc.cib-6D2 and QTw.cib-6D2) on moisture content was also highlighted, potentially affected by a novel locus, and validated by its flanking Kompetitive Allele-Specific PCR marker, and TraesCS6D02G109500, encoding aleurone layer morphogenesis protein, was deduced to be one of the candidate genes for this locus. This result observed at the QTL level the possible contribution of grain water content to the balances among yield, nutrients, and quality properties and reported a possible new locus controlling grain moisture content as well as its linked molecular marker for further grain feature improvement.
Collapse
Affiliation(s)
- Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaofeng Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jun Cao
- Yibin University, Yibin, China
| | - Shaodan Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangsi Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Zhibin Xu, ; Tao Wang,
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zhibin Xu, ; Tao Wang,
| |
Collapse
|
5
|
Classification, Processing Procedures, and Market Demand of Chinese Biscuits and the Breeding of Special Wheat for Biscuit Making. J FOOD QUALITY 2022. [DOI: 10.1155/2022/6679776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the improvement of living standards, consumers’ demand for wheat food is gradually diversified. Biscuit, as a kind of convenience food, becomes a consumer’s leisure snack due to its characteristics such as low processing cost, easy-to-carry and convenient-to-eat traits, long shelf life, diverse varieties, and rich tastes, which have attracted more and more people. Biscuits are composed of four main ingredients, which are flour, fat/oil, sugar, and water, whereas several secondary ingredients also are important sources of high molecular carbohydrates, plant proteins, vitamins, and minerals for human beings. In this study, we systematically summarized the related research of biscuits, including the main types of China’s biscuits, the market demands, and statistics of wheat planting, production, and import in recent ten years, as well as the research of soft wheat breeding for biscuit. The flour consumption of biscuit industry has been maintained at more than 4 million tons, accounting for more than 30% of the flour consumption in food industry. The planting area of wheat in China has stabilized around 22.8 million hectares in 2010–2020, while the yield of wheat has increased 18.0% (20.86 million t) due to the increase of yield per unit of wheat. China’s total annual pastry import bill increased 5 times and the gap between import and export bill of pastry has been increased more than 7 times from 2010 to 2020, suggesting the strong demand of the national pastry market. This research also provides a direction for the future breeding of special soft wheat for biscuits in China.
Collapse
|
6
|
Ibba MI, Kumar N, Morris CF. Identification and genetic characterization of extra soft kernel texture in soft kernel durum wheat (
Triticum turgidum
ssp.
durum
). Cereal Chem 2021. [DOI: 10.1002/cche.10471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maria Itria Ibba
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT) Texcoco Mexico
- USDA‐ARS Western Wheat & Pulse Quality Laboratory Washington State University Pullman WA USA
| | - Neeraj Kumar
- USDA‐ARS Western Wheat & Pulse Quality Laboratory Washington State University Pullman WA USA
- Advanced Plant Technology Department of Plant and Environmental Sciences Clemson University Clemson SC USA
| | - Craig F. Morris
- USDA‐ARS Western Wheat & Pulse Quality Laboratory Washington State University Pullman WA USA
| |
Collapse
|
7
|
Aoun M, Carter AH, Ward BP, Morris CF. Genome-wide association mapping of the 'super-soft' kernel texture in white winter wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2547-2559. [PMID: 34052883 DOI: 10.1007/s00122-021-03841-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
The novel super-soft kernel phenotype has the potential to improve wheat processing and flour quality. We identified genomic regions associated with this kernel texture in white winter wheat. Grain hardness is a key determinant of wheat milling and baking quality. The recently discovered 'super-soft' kernel phenotype has the potential to improve wheat processing and flour quality. However, the genetic basis underlying the super-soft trait in wheat is not yet well understood. In this study, we investigated the phenotypic and genotypic structure of the super-soft trait in a collection of 172 advanced soft white winter wheat breeding lines and cultivars adapted to the Pacific Northwest region of the USA. This collection had a continuous distribution for grain hardness index (single-kernel characterization system). Ten super-soft genotypes showed hardness index ≤ 12 including the cultivar Jasper. Over 98,000 SNP markers from genotyping-by-sequencing were used for association mapping (GWAS). The GWAS identified 20 significant markers associated with grain hardness. These significant SNPs corresponded to seven QTL on chromosomes 2B, 3A, 3B, 5A, 6B,7A, and one unaligned chromosome. Two of these QTL, QSKhard.wql-3A and QSKhard.wql-5A, had large effects and distinguished between the normal soft and the super-soft classes. QSKhard.wql-3A and QSKhard.wql-5A reduced the hardness index by 11.7 and 13.1 on average, respectively. The remaining QTL had small effects and reduced grain hardness within the normal soft range. QSKhard.wql-2B, QSKhard.wql-3A, QSKhard.wql-3B, and QSKhard.wql-6B were not previously reported to be in genomic regions of grain hardness-related genes/QTL. The identified super-soft genotypes as well as the SNPs associated with lower grain hardness will be useful to assist breeding for this grain texture trait.
Collapse
Affiliation(s)
- Meriem Aoun
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Arron H Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Brian P Ward
- USDA-ARS Plant Science Research Campus, Raleigh, NC, 27695, USA
- Department of Horticulture and Crop Science, Ohio State University, Wooster, OH, 44691, USA
| | - Craig F Morris
- USDA-ARS Western Wheat Quality Laboratory, E-202 Food Quality Building, Washington State University, Pullman, WA, 99164-6394, USA.
| |
Collapse
|
8
|
Tu M, Li Y. Toward the Genetic Basis and Multiple QTLs of Kernel Hardness in Wheat. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1631. [PMID: 33255282 PMCID: PMC7760206 DOI: 10.3390/plants9121631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/03/2022]
Abstract
Kernel hardness is one of the most important single traits of wheat seed. It classifies wheat cultivars, determines milling quality and affects many end-use qualities. Starch granule surfaces, polar lipids, storage protein matrices and Puroindolines potentially form a four-way interaction that controls wheat kernel hardness. As a genetic factor, Puroindoline polymorphism explains over 60% of the variation in kernel hardness. However, genetic factors other than Puroindolines remain to be exploited. Over the past two decades, efforts using population genetics have been increasing, and numerous kernel hardness-associated quantitative trait loci (QTLs) have been identified on almost every chromosome in wheat. Here, we summarize the state of the art for mapping kernel hardness. We emphasize that these steps in progress have benefitted from (1) the standardized methods for measuring kernel hardness, (2) the use of the appropriate germplasm and mapping population, and (3) the improvements in genotyping methods. Recently, abundant genomic resources have become available in wheat and related Triticeae species, including the high-quality reference genomes and advanced genotyping technologies. Finally, we provide perspectives on future research directions that will enhance our understanding of kernel hardness through the identification of multiple QTLs and will address challenges involved in fine-tuning kernel hardness and, consequently, food properties.
Collapse
Affiliation(s)
| | - Yin Li
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| |
Collapse
|
9
|
Delwiche S, Morris C, Kiszonas A. Compressive strength of Super Soft wheat endosperm. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2019.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Identification of loci and molecular markers associated with Super Soft kernel texture in wheat. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|