1
|
Sharma A, Kashyap S, Singh S. Exploring the advances in quinoa processing: A comprehensive review enhancing nutritional quality and health benefits along with industrial feasibility of quinoa. Food Res Int 2025; 206:116093. [PMID: 40058932 DOI: 10.1016/j.foodres.2025.116093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/04/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
The global dietary trend is shifting toward gluten-free crops with high nutritional value, driven by growing consumer awareness of environmental and health benefits of foods and food ingredients. Quinoa, a potential functional dietary ingredient, is rich in fiber, vitamins, and minerals. This review examines the impact of various processing methods, including thermal treatments (boiling, steaming, roasting), non-thermal techniques (germination, fermentation, microwave treatment, gamma irradiation, high hydrostatic pressure, and atmospheric pressure cold plasma), on the quality parameters of quinoa. Additionally, the health benefits of quinoa are explored in relation to human well-being. The review highlights recent advances in quinoa applications across industries, showcasing its versatility as an ingredient in functional foods and feeds. The effects of treatments vary widely, with each offering distinct advantages and limitations. Quinoa-based functional foods demonstrate the potential for developing health-promoting products, as quinoa's bioactive components exhibit antioxidant, antidiabetic, antihypertensive, anti-inflammatory, anticancer, and anti-obesity properties.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106, Punjab, India.
| | - Shweta Kashyap
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106, Punjab, India
| | - Sukhcharn Singh
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106, Punjab, India
| |
Collapse
|
2
|
Paśko P, Galanty A, Ramos-Zambrano E, Ayala ALM, Gralak M, Gdula-Argasińska J, Pavlov D, Deutsch J, Gorinstein S. Molecular Profiling and FTIR Characterization of Wheat Germ Oil, Supported by the Screening of Its Anti-Inflammatory and Cytotoxic Properties. Biomolecules 2025; 15:464. [PMID: 40305174 PMCID: PMC12025205 DOI: 10.3390/biom15040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Wheat germ oil (WGO), derived from the nutrient-dense germ of wheat kernels, is a functional bioactive product, known for its rich composition of essential fatty acids, sterols, tocopherols, and polyphenols. This study aimed to comprehensively profile the molecular and therapeutic properties of WGO, focusing on its antioxidant, cytotoxic, and anti-inflammatory activity. Using advanced analytical techniques such as gas chromatography-mass spectrometry (GC-MS), Fourier Transform Infrared (FTIR) spectroscopy, and fluorescence analysis, WGO was shown to contain high levels of linoleic acid (45.3%), squalene (2.52 g/100 g), and polyphenols. WGO displayed selective cytotoxicity, inhibiting cancer cells' viability in melanoma, prostate, and colorectal cancer cell lines, but not normal cells, highlighting its chemoprevention potential. Furthermore, WGO significantly reduced LPS-induced nitric oxide and IL-6 production in macrophages, with effects plateauing at higher doses. The 3D fluorescence spectra showed a significant decrease in fluorescence intensity when human serum albumin interacted with the WGO polyphenol fraction, indicating a strong binding affinity and stable complex formation. These findings emphasize the nutritional and therapeutic potential of WGO as a natural bioactive agent, warranting further mechanistic investigation and broader applications in health and disease management.
Collapse
Affiliation(s)
- Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland;
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland;
| | - Emilia Ramos-Zambrano
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec 62731, Mexico; (E.R.-Z.); (A.L.M.A.)
| | - Alma Leticia Martinez Ayala
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec 62731, Mexico; (E.R.-Z.); (A.L.M.A.)
| | - Mikołaj Gralak
- Department of Physiological Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland;
| | - Danail Pavlov
- Department of Biochemistry, Molecular Medicine and Nutrigenomics with Laboratory of Nutrigenomics, Functional Foods and Nutraceuticals, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria;
| | - Joseph Deutsch
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem 9112002, Israel
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem 9112002, Israel
| |
Collapse
|
3
|
Türk Z, Leiber F, Schlittenlacher T, Hamburger M, Walkenhorst M. Multiple benefits of herbs: Polygonaceae species in veterinary pharmacology and livestock nutrition. Vet Anim Sci 2025; 27:100416. [PMID: 39720831 PMCID: PMC11667078 DOI: 10.1016/j.vas.2024.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Herbs rich in secondary metabolites may possess beneficial properties in livestock nutrition and health. 49 Polygonaceae species of European mountain regions were included in a qualitative systematic review based on the methodological framework of the PRISMA statement. 174 relevant publications were identified. They comprised 231 in vitro and 163 in vivo experiments with cattle, sheep, goats, poultry, pigs, and rodents. For 16 Polygonaceae species no reports were found. Fagopyrum esculentum and Fagopyrum tataricum showed potential as anti-inflammatory, antioxidative and metabolic modifying herbs and feeds improving intake and nitrogen conversion in broiler as well as milk quality and ruminal biotransformation in dairy cows. Polygonum aviculare was promising as an antimicrobial and anti-inflammatory drug or feed, improving performance and affecting ruminal biotransformation in sheep, and Polygonum bistorta as an anti-inflammatory drug or feed, improving performance in broiler and mitigating methane emissions in ruminants. Rumex obtusifolius showed potential as an antibacterial drug or feed improving ruminal biotransformation and preventing bloating in cows, while Rumex acetosa and Rumex acetosella had antimicrobial and anti-inflammatory properties. Furthermore, Polygonum minus, Polygonum persicaria, Rumex crispus and Rumex patientia possess interesting anti-inflammatory and antimicrobial activities. In conclusion, some Polygonaceae species show relevant properties that might be useful to prevent and treat livestock diseases, combined with nutritional benefits in performance, product quality, lowering ruminal methane and ammonia formation and transferring omega-3 fatty-acids from feed to tissue. The potential of such multifunctional plants for a holistic integration of veterinary, nutritional and ecological perspectives under a one-health approach of livestock management is discussed.
Collapse
Affiliation(s)
- Zafide Türk
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
- University of Basel, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Florian Leiber
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
| | - Theresa Schlittenlacher
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
| | - Matthias Hamburger
- University of Basel, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Michael Walkenhorst
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
| |
Collapse
|
4
|
Ding W, Liu Y, Liu Y, Wang G, Liu X, Peng X, Li H, Li Z. Research Progress in Nutritional Components, Biological Activity, and Processing and Utilization of Chenopodium quinoa Willd. ACS FOOD SCIENCE & TECHNOLOGY 2025; 5:411-427. [DOI: 10.1021/acsfoodscitech.4c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Affiliation(s)
- Wei Ding
- College of Biological and Food Engineering
- Jilin Engineering Normal University
- Jilin Collaborative Innovation Center for Grain Resources Development and Industrialization, College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Yue Liu
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Yingqi Liu
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Guizhen Wang
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Xianjun Liu
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Xinli Peng
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Hao Li
- College of Biological and Food Engineering
- Jilin Engineering Normal University
- Jilin Collaborative Innovation Center for Grain Resources Development and Industrialization, College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Zhandong Li
- College of Biological and Food Engineering
- Jilin Engineering Normal University
- Jilin Collaborative Innovation Center for Grain Resources Development and Industrialization, College of Biological and Food Engineering
- Jilin Engineering Normal University
| |
Collapse
|
5
|
Jamróz P, Świeży A, Noworyta M, Starzak K, Środa P, Wielgus W, Szymaszek P, Tyszka-Czochara M, Ortyl J. Photocurable biomaterials labeled with luminescent sensors dedicated to bioprinting. J Biotechnol 2024; 395:122-140. [PMID: 39349123 DOI: 10.1016/j.jbiotec.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/20/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
In the present study, we focused on the development and characterization of formulations that function as biological inks. These inks were doped with coumarin derivatives to act as molecular luminescent sensors that allow the monitoring of the kinetics of in situ photopolymerization in 3D (DLP) printing and bioprinting using pneumatic extrusion techniques, making it possible to study the changes in the system in real time. The efficiency of the systems was tested on compositions containing monomers: poly(ethylene glycol) diacrylates and photoinitiators: 2,4,6-trimethylbenzoyldi-phenylphosphinate and lithium phenyl-2,4,6-trimethylbenzoylphosphinate. The selected formulations were spectroscopically characterized and examined for their photopolymerization kinetics and rheological properties. This is important because of the fact that spectroscopic characterization, examination of photopolymerization kinetics, and rheological properties provide valuable insights into the behaviour of photocurable resin dedicated for 3D printing processes. The next step involved printing tests on commercially available 3D printers. In turn, printing carried out as part of the work on commercially available 3D printers further verified the effectiveness of the formulations. Moreover the formulation components and the resulting 3D objects were tested for their antiproliferative effects on the selected Chinese hamster ovary cell line, CHO-K1.
Collapse
Affiliation(s)
- Paweł Jamróz
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland
| | - Andrzej Świeży
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, Cracow 30-348, Poland
| | - Małgorzata Noworyta
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland
| | - Katarzyna Starzak
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland
| | - Patrycja Środa
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, Cracow 30-348, Poland
| | - Weronika Wielgus
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland
| | - Patryk Szymaszek
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland
| | | | - Joanna Ortyl
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, Cracow 30-348, Poland; Photo4Chem Ltd., Lea 114, Cracow 30-133, Poland.
| |
Collapse
|
6
|
Xi X, Fan G, Xue H, Peng S, Huang W, Zhan J. Harnessing the Potential of Quinoa: Nutritional Profiling, Bioactive Components, and Implications for Health Promotion. Antioxidants (Basel) 2024; 13:829. [PMID: 39061898 PMCID: PMC11273950 DOI: 10.3390/antiox13070829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Quinoa, a globally cultivated "golden grain" belonging to Chenopodium in the Amaranthaceae family, is recognized for being gluten-free, with a balanced amino acid profile and multiple bioactive components, including peptides, polysaccharides, polyphenols, and saponins. The bioactive compounds extracted from quinoa offer multifaceted health benefits, including antioxidative, anti-inflammatory, antimicrobial, cardiovascular disease (CVD) improvement, gut microbiota regulation, and anti-cancer effects. This review aims to intricately outline quinoa's nutritional value, functional components, and physiological benefits. Importantly, we comprehensively provide conclusions on the effects and mechanisms of these quinoa-derived bioactive components on multiple cancer types, revealing the potential of quinoa seeds as promising and effective anti-cancer agents. Furthermore, the health-promoting role of quinoa in modulating gut microbiota, maintaining gut homeostasis, and protecting intestinal integrity was specifically emphasized. Finally, we provided a forward-looking description of the opportunities and challenges for the future exploration of quinoa. However, in-depth studies of molecular targets and clinical trials are warranted to fully understand the bioavailability and therapeutic application of quinoa-derived compounds, especially in cancer treatment and gut microbiota regulation. This review sheds light on the prospect of developing dietary quinoa into functional foods or drugs to prevent and manage human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.X.); (G.F.); (H.X.); (S.P.); (W.H.)
| |
Collapse
|
7
|
Paśko P, Galanty A, Ramos-Zambrano E, Ayala ALM, Delgado E, Argasińska JG, Zagrodzki P, Podsiadły R, Deutsch J, Gorinstein S. Pseudocereal Oils, Authenticated by Fourier Transform Infrared Spectroscopy, and their Chemopreventive Properties. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:151-158. [PMID: 38231454 DOI: 10.1007/s11130-024-01139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Amaranth, quinoa, and buckwheat are the representatives of pseudocereals, different parts and by-products of which are used in daily nutrition and food processing industry. However, only scarce information exists on the bioactivity of their oils. Thus, oils obtained from amaranth, buckwheat, and red, yellow, and white quinoa seeds were evaluated in terms of their nutritional (fatty acid profile, squalene), cytotoxic (against normal and neoplastic gastrointestinal, prostate, and skin cells), anti-inflammatory and antiradical (interleukin 6, TNF-alpha, nitric oxide, DPPH, Total phenolics, and superoxide dismutase) potential in the in vitro model. Linoleic (42.9-52.5%) and oleic (22.5-31.1%) acids were the two main unsaturated, while palmitic acid (4.9-18.6%) was the major saturated fatty acid in all evaluated oils. Squalene was identified in all evaluated oils with the highest content in amaranth oil (7.6 g/100 g), and the lowest in buckwheat oil (2.1 g/100 g). The evaluated oils exerted a high direct cytotoxic impact on cancer cells of different origins, but also revealed anti-inflammatory and antiradical potentials. Yellow quinoa oil was the most active, especially toward skin (A375; IC50 6.3 µg/mL), gastrointestinal (HT29 IC50 4.9 µg/mL), and prostate cancer cells (LNCaP IC50 7.6 µg/mL). The observed differences in the activity between the oils from the tested quinoa varieties deserve further studies. High selectivity of the oils was noted, which indicates their safety to normal cells. The obtained results indicate that the oils are good candidates for functional foods with perspective chemopreventive potential.
Collapse
Affiliation(s)
- Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Emilia Ramos-Zambrano
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec, Mexico
| | | | - Efren Delgado
- Food Science and Technology, Department of Family and Consumer Sciences, New Mexico State University, New Mexico, USA
- Center of Excellence in Sustainable Food and Agricultural Systems, New Mexico State University, New Mexico, USA
| | - Joanna Gdula- Argasińska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Robert Podsiadły
- Institute of Physics, Faculty of Natural Sciences, Jan Kochanowski University, Kielce, Poland
| | - Joseph Deutsch
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
8
|
Ren G, Teng C, Fan X, Guo S, Zhao G, Zhang L, Liang Z, Qin P. Nutrient composition, functional activity and industrial applications of quinoa (Chenopodium quinoa Willd.). Food Chem 2023; 410:135290. [PMID: 36608550 DOI: 10.1016/j.foodchem.2022.135290] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Quinoa is one of the gluten-free crops that has attracted considerable interest. Quinoa contains functional ingredients such as bioactive peptides, polysaccharides, saponins, polyphenols, flavonoids and other compounds. It is very important to determine efficient methods to identify such functional ingredients, and to explain their possible health benefits in humans. In this review, the chemical structure and biological activity mechanisms of quinoa nutrient composition have been elaborated. In addition, the development of quinoa-based functional foods and feed is emerging, providing a reference for the development of functional products with quinoa as an ingredient that are beneficial to health. The active ingredients in quinoa have different health effects including antioxidant, antidiabetic, antihypertensive, anti-inflammatory, and anti-obesity activities. Further exploration is also needed to improve the application of quinoa within the functional food industry, and in the areas of feed, medicine and cosmetics.
Collapse
Affiliation(s)
- Guixing Ren
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Cong Teng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shengyuan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Gang Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zou Liang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Peiyou Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Lan Y, Zhang W, Liu F, Wang L, Yang X, Ma S, Wang Y, Liu X. Recent advances in physiochemical changes, nutritional value, bioactivities, and food applications of germinated quinoa: A comprehensive review. Food Chem 2023; 426:136390. [PMID: 37307740 DOI: 10.1016/j.foodchem.2023.136390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/28/2023] [Accepted: 05/13/2023] [Indexed: 06/14/2023]
Abstract
The production and consumption of functional foods has become an essential food industry trend. Due to its high nutritional content, quinoa is regarded as a super pseudocereal for the development of nutritious foods. However, the presence of antinutritional factors and quinoa's distinctive grassy flavor limit its food applications. Due to its benefits in enhancing the nutritional bioavailability and organoleptic quality of quinoa, germination has garnered significant interest. To date, there is no systematic review of quinoa germination and the health benefits of germinated quinoa. This review details the nutritional components and bioactivities of germinated quinoa, as well as the potential mechanisms for the accumulation of bioactive compounds during the germination process. Additionally, evidence supporting the health benefits of germinated quinoa, the current status of related product development, and perspectives for future research are presented. Thus, our research is likely to provide theoretical support for the use of germinated quinoa resources.
Collapse
Affiliation(s)
- Yongli Lan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wengang Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China; Academy of Agriculture and Forestry Sciences, Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Xining 810016, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lei Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xijuan Yang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China; Academy of Agriculture and Forestry Sciences, Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Xining 810016, China
| | - Shaobo Ma
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
The Effects of Processing Technologies on Nutritional and Anti-nutritional Properties of Pseudocereals and Minor Cereal. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
VALENZUELA-GONZÁLEZ M, ROUZAUD-SÁNDEZ O, LEDESMA-OSUNA AI, ASTIAZARÁN-GARCÍA H, SALAZAR-LÓPEZ NJ, VIDAL-QUINTANAR RL, ROBLES-SÁNCHEZ M. Bioaccessibility of phenolic compounds, antioxidant activity, and consumer acceptability of heat-treated quinoa cookies. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.43421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Ng CY, Wang M. The functional ingredients of quinoa (
Chenopodium quinoa
) and physiological effects of consuming quinoa: A review. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Chong Yi Ng
- Food and Nutritional Science Program School of Biological Sciences The University of Hong Kong Hong Kong P. R. China
| | - Mingfu Wang
- Food and Nutritional Science Program School of Biological Sciences The University of Hong Kong Hong Kong P. R. China
| |
Collapse
|
13
|
Antioxidant, quenching, electrophoretic, antifungal and structural properties of proteins and their abilities to control the quality of Amaranthus industrial products. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Păcularu-Burada B, Georgescu LA, Vasile MA, Rocha JM, Bahrim GE. Selection of Wild Lactic Acid Bacteria Strains as Promoters of Postbiotics in Gluten-Free Sourdoughs. Microorganisms 2020; 8:E643. [PMID: 32354104 PMCID: PMC7284720 DOI: 10.3390/microorganisms8050643] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022] Open
Abstract
The occurrence of inflammatory responses in humans is frequently associated with food intolerances and is likely to give rise to irritable bowel disease. The use of conventional or unconventional flours to produce gluten-free baking doughs brings important technological and nutritional challenges, and the use of the sourdough biotechnology has the potential to overcome such limitations. In addition, the typical metabolic transformations carried out by Lactic Acid Bacteria (LAB) can become an important biotechnological process for the nutritional fortification and functionalization of sourdoughs due to the resulting postbiotics. In such a context, this research work aimed at isolating and selecting new LAB strains that resort to a wide range of natural environments and food matrices to be ultimately employed as starter cultures in gluten-free sourdough fermentations. Nineteen LAB strains belonging to the genera of Lactobacillus, Leuconostoc, Pediococcus, and Streptococcus were isolated, and the selection criteria encompassed their acidification capacity in fermentations carried out on chickpea, quinoa, and buckwheat flour extracts; the capacity to produce exopolysaccharides (EPS); and the antimicrobial activity against food spoilage molds and bacteria. Moreover, the stability of the LAB metabolites after the fermentation of the gluten-free flour extracts submitted to thermal and acidic treatments was also assessed.
Collapse
Affiliation(s)
- Bogdan Păcularu-Burada
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - Luminița Anca Georgescu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - Mihaela Aida Vasile
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - João Miguel Rocha
- REQUIMTE–Rede de Química e Tecnologia, Laboratório de Química Verde (LAQV), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n. P-4169-007 Porto, Portugal;
| | - Gabriela-Elena Bahrim
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| |
Collapse
|
15
|
Stikić RI, Milinčić DD, Kostić AŽ, Jovanović ZB, Gašić UM, Tešić ŽL, Djordjević NZ, Savić SK, Czekus BG, Pešić MB. Polyphenolic profiles, antioxidant, and in vitro anticancer activities of the seeds of Puno and Titicaca quinoa cultivars. Cereal Chem 2020. [DOI: 10.1002/cche.10278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | - Uroš M. Gašić
- Institute for Biological Research "Siniša Stanković" ‐ National Institute of Republic of Serbia University of Belgrade Belgrade Serbia
| | | | - Nataša Z. Djordjević
- Department for Biomedical Sciences State University of Novi Pazar Novi Pazar Serbia
| | | | | | | |
Collapse
|