1
|
Wang Y, Huang Z, Li C, Dai O, Li M, Liu C, Hong W, Lei X, Wei H, Zhou T, Tong C, Qiu C, Pang J. Design and applications of antifreeze polysaccharide-based hydrogels for cryoprotection and biotechnological advancements: A review. Int J Biol Macromol 2025; 310:143317. [PMID: 40254201 DOI: 10.1016/j.ijbiomac.2025.143317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Polysaccharide-based hydrogels possess desirable characteristics such as flexibility, biocompatibility, and biodegradability. Nevertheless, these hydrogels frequently lose their inherent traits and functionality under low-temperature circumstances, which significantly restricts their potential applications in cold environments. Antifreeze hydrogels provide a promising solution to this challenge by maintaining their properties at cold temperatures, showcasing remarkable advantages. This review commences with a bibliometric analysis via VOS Viewer to acquire a comprehensive comprehension of the development tendencies in antifreeze hydrogels. It subsequently summarizes diverse antifreeze mechanisms in polysaccharide-based hydrogels, encompassing solute ion modification, organic alcohol modification, ion gels, eutectic gels, and intrinsic antifreeze properties through molecular chain polymerization. Additionally, the review explores the applications of antifreeze hydrogels in food preservation, flexible wearable devices, and energy storage. Finally, the future directions for the development of antifreeze polysaccharide-based hydrogels are deliberated, with an emphasis on the utilization of natural polysaccharide resources to create hydrogels that integrate antifreeze performance, mechanical properties, and stability, thereby facilitating advancements in related industries.
Collapse
Affiliation(s)
- Yueguang Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zifeng Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Charlie Li
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Oujun Dai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meining Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengchu Liu
- University of Maryland-UME Sea Grant Extension Program, College Park, MD 20742, USA
| | - Wanxin Hong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyu Wei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Taoyi Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cailing Tong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Hou L, Zhao B, Wu C, Liu T, Liu X, Li H. Physicochemical and microstructural properties of frozen cooked noodles during frozen storage affected by enzymatically interesterified soybean oil-based plastic fat. Food Res Int 2025; 203:115842. [PMID: 40022366 DOI: 10.1016/j.foodres.2025.115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
The quality deterioration of frozen cooked noodles (FCNs) during frozen storage remains a challenging problem, primarily characterized by a decline in textural performance. The objective of this study was to investigate the underlying mechanism responsible for the improvement in FCNs quality by utilizing enzymatically interesterified soybean oil-based plastic fat (EIPF). During the 12-week frozen storage, an improvement in hardness, from 3421.44 g to 3981.91 g, and a decrease in adhesiveness, water absorption rate, and cooking loss, from 177.49 g.s to 153.54 g.s, 80.46 % to 70.43 %, and 2.86 % to 2.16 %, respectively, were observed after adding 1 % of EIPF. The results demonstrated that 1 % EIPF significantly (P < 0.05) mitigated the decline in the quality of FCNs. Additionally, EIPF effectively restrained the transformation and migration of water and resulted in decrease in SDS-soluble gluten content and SH/S-S ratio in FCNs during frozen storage. The addition of 1 % EIPF increased α-helixes and decreased random coils, indicating greater network stability. Microscopic observation further confirmed that the addition of EIPF promoted the formation of dense gluten network. The current study positions EIPF as a promising additive for enhancing the quality of FCNs, thereby promoting its application in food industry.
Collapse
Affiliation(s)
- Liuyu Hou
- Food Engineering Technology Research Center/Key Laboratory of Henan Province Henan University of Technology China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre China
| | - Beibei Zhao
- Food Engineering Technology Research Center/Key Laboratory of Henan Province Henan University of Technology China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre China.
| | - Chuanjing Wu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province Henan University of Technology China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre China
| | - Ting Liu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province Henan University of Technology China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre China
| | - Xinru Liu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province Henan University of Technology China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre China
| | - Hua Li
- Food Engineering Technology Research Center/Key Laboratory of Henan Province Henan University of Technology China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre China
| |
Collapse
|
3
|
Jiang S, Mo F, Liu Q, Jiang L. Insights into the in vitro digestibility and rheology properties of myofibrillar protein with different incorporation types of curdlan. Food Chem 2024; 459:140255. [PMID: 38986201 DOI: 10.1016/j.foodchem.2024.140255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
This study investigated the effects of two forms of curdlan, namely curdlan thermoreversibility (CT) and curdlan powder (CP), on in vitro digestion and viscoelastic properties of myofibrillar protein (MP). As the level of curdlan (0.1-0.5%) increased, pepsin digestibility and pancreatin digestibility significantly decreased, active sulfhydryl group also decreased, while surface hydrophobicity and total sulfhydryl groups increased. Meanwhile, curdlan enhanced the secondary and tertiary structures of MP. As the pepsin digest, α-helix gradually transformed into random coil. Furthermore, the viscosity, storage modulus (G") and loss modulus (G') increased with the CT or CP addition. After in vitro digestion, the viscoelasticity significantly decreased with a dose-response. Molecular dynamics simulations showed hydrogen bond formation (2.86 on average) between MP and curdlan contributing to reduced radius of gyration and solvent accessible surface area. Overall, this study highlighted curdlan as a promising ingredient to modulate structural properties and digestibility of MP, especially in pre-hydrated (CT) groups.
Collapse
Affiliation(s)
- Shuai Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Fan Mo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
4
|
Yin L, Wu X, Qin G, Han J, Liu M, Wei Y, Liang Y, Zhang J, Zhang S, Zhu H, Huang Y, Zheng X, Liu C, Li L. Effect of wheat flour particle size on the quality deterioration of quick-frozen dumpling wrappers during freeze-thawed cycles. Food Res Int 2024; 195:114957. [PMID: 39277262 DOI: 10.1016/j.foodres.2024.114957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
To reveal the effect of wheat flour particle size on the quality deterioration of quick-frozen dumpling wrappers (QFDW) during freeze-thawed (F/T) cycles, the components and physicochemical properties of wheat flours with five different particle sizes were determined and compared, along with the changes in texture and sensory properties, water status, and microstructure of QFDW during F/T cycles. Results showed that as particle size decreased, the damaged starch content and B-type starch content increased, the water absorption increased, and the gluten strength decreased. Furthermore, F/T cycles negatively impacted the quality of QFDW, evidenced by decreased texture properties and sensory evaluation score, water redistribution, higher freezable water content, and disruption of gluten network. Notably, QFDW made from larger particle size wheat flours required the shortest duration when traversing the maximum ice crystal formation zone. The QFDW made from larger particle size wheat flours formed a more stable starch-gluten matrix, which resisted the damage caused by ice recrystallization, demonstrating better water binding capacity and F/T resistance. The results may provide theoretical guidance for the study of QFDW quality and the moderate processing of wheat flour in actual production.
Collapse
Affiliation(s)
- Lulu Yin
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xinyue Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guolan Qin
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiajing Han
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mei Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yangkun Wei
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jin Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shenying Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haojia Zhu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Huang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueling Zheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Chong Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Limin Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
5
|
Qiao K, Peng B. Effect of frozen storage on the quality of frozen instant soup rice noodles: From the moisture and starch characteristics. Int J Biol Macromol 2024; 279:135320. [PMID: 39236954 DOI: 10.1016/j.ijbiomac.2024.135320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
This study aimed to simulate frozen instant soup rice noodles (FISRN) and investigate the effects of long-term frozen storage (-18 °C, 180 days) on the quality characteristics, moisture status, and starch retrogradation of FISRN. The findings indicated that the extent of starch retrogradation gradually increased over 90 days, which elevated the RS rate and inhibited starch digestibility. However, recrystallization resulted in a gradual increase in ice crystal size after 90 days, which disrupted the ordered structure formed by starch retrogradation, reduced the degree of starch order, and accelerated the rate of starch digestion. Furthermore, a longer relaxation time (T24) was detected by NMR with increasing storage time. The weakly bound water in FISRN was gradually converted to free water. Texture results suggested that the hardness of FISRN experienced a general decrease. The cooking loss increased progressively from 3.66 % to 8.10 %. Scanning electron microscope demonstrated that the internal porous network structure of FISRN became inhomogeneous, and a significant number of apertures were formed on the surface. Overall, starch retrogradation and ice recrystallization significantly impact the quality of FISRN during long-term frozen storage. The findings may potentially influence the consumption and market circulation of FISRN positively.
Collapse
Affiliation(s)
- Kong Qiao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bangzhu Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
6
|
Zheng S, Zhang B, Ai Z, Cheng L, Yang Y. Insights into the effects of frozen storage on the rheology, texture and in vitro digestibility of frozen Liangpi (starch gel food). Food Res Int 2024; 196:114904. [PMID: 39614463 DOI: 10.1016/j.foodres.2024.114904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 12/01/2024]
Abstract
In this study, the effects of frozen storage on the rheology, texture and in vitro digestibility of frozen Liangpi and its internal influencing mechanism were investigated. The results showed that with increasing frozen storage time, the solid-like property proportion of frozen Liangpi gradually enhanced, and its hardness and chewiness gradually increased, and its springiness gradually decreased, while its digestion rate gradually slowed down. During frozen storage, the water fluidity of frozen Liangpi gradually enhanced, and its starch molecules rearrangement degree gradually deepened. Meanwhile, the squeezing on the structure of frozen Liangpi caused by ice crystals recrystallization gradually aggravated. Based on the above results, it could be speculated that starch retrogradation caused by ice crystals recrystallization was the critical reason for the changes in the rheology, texture and in vitro digestibility of frozen Liangpi during frozen storage.
Collapse
Affiliation(s)
- Shuaishuai Zheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China; National R&D Center For Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China; Henan Engineering Research Center of Cold-Chain Food, Zhengzhou 450002, China
| | - Bobo Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China; National R&D Center For Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China
| | - Zhilu Ai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China; National R&D Center For Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China; Henan Engineering Research Center of Cold-Chain Food, Zhengzhou 450002, China.
| | - Lilin Cheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; National R&D Center For Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China; Henan Engineering Research Center of Cold-Chain Food, Zhengzhou 450002, China
| | - Yong Yang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China; National R&D Center For Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China; Henan Engineering Research Center of Cold-Chain Food, Zhengzhou 450002, China.
| |
Collapse
|
7
|
Yermagambetova A, Tazhibayeva S, Takhistov P, Tyussyupova B, Tapia-Hernández JA, Musabekov K. Microbial Polysaccharides as Functional Components of Packaging and Drug Delivery Applications. Polymers (Basel) 2024; 16:2854. [PMID: 39458682 PMCID: PMC11511474 DOI: 10.3390/polym16202854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
This review examines microbial polysaccharides' properties relevant to their use in packaging and pharmaceutical applications. Microbial polysaccharides are produced by enzymes found in the cell walls of microbes. Xanthan gum, curdlan gum, pullulan, and bacterial cellulose are high-molecular-weight substances consisting of sugar residues linked by glycoside bonds. These polysaccharides have linear or highly branched molecular structures. Packaging based on microbial polysaccharides is readily biodegradable and can be considered as a renewable energy source with the potential to reduce environmental impact. In addition, microbial polysaccharides have antioxidant and prebiotic properties. The physico-chemical properties of microbial polysaccharide-based films, including tensile strength and elongation at break, are also evaluated. These materials' potential as multifunctional packaging solutions in the food industry is demonstrated. In addition, their possible use in medicine as a drug delivery system is also considered.
Collapse
Affiliation(s)
- Aigerim Yermagambetova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Sagdat Tazhibayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Paul Takhistov
- Department of Food Science, Rutgers State University of New Jersey, New Brunswick, NJ 07102, USA;
| | - Bakyt Tyussyupova
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| | - José Agustín Tapia-Hernández
- Departamento de Investigación y Posgrado en Alimentos (DIPA), University of Sonora, Hermosillo 83000, Sonora, Mexico;
| | - Kuanyshbek Musabekov
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| |
Collapse
|
8
|
Cheng W, Fu M, Xie K, Meng L, Gao C, Wu D, Feng X, Wang Z, Tang X. Insights into the effect mechanism of freeze-thaw cycles on starch gel structure and quality characteristics of frozen extruded whole buckwheat noodles. Int J Biol Macromol 2024; 278:134577. [PMID: 39122075 DOI: 10.1016/j.ijbiomac.2024.134577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The effects of freeze-thaw cycles (FTC) on starch gel structure and quality characteristics of frozen extruded whole buckwheat noodles (FEWBN) were studied. The repeated FTC treatments induced the retrogradation of amylose which increased the compactness, crystallinity, hardness, and cooking time of FEWBN. However, with the increasing number of freeze-thaw cycles, the larger volume of ice crystals formed in the noodles destroyed the starch gel network structure to a certain extent, and led to the dehydration and syneresis of the noodles, and the quality deterioration. However, moderate amylose retrogradation occurred during the FTC treatment was found to be beneficial for the quality of FEWBN. After one time of FTC treatment, the cooking loss of 3.53 % was even lower compared with that without FTC treatment (4.61 %). After seven times of FTC treatment, the cooking loss of FEWBN was 6.53 %, and the breaking rate was still 0, indicating that FEWBN could resist the damage caused by temperature fluctuations on the internal structure of frozen food to a certain extent, and maintain good quality. This study establishes a fundamental basis for the development of buckwheat noodles with good freeze-thaw stability and high cooking quality.
Collapse
Affiliation(s)
- Weiwei Cheng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Meixia Fu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Kaiwen Xie
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Linghan Meng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Di Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
9
|
Monalisa K, Hasan MT, Sayem ASM, Hoque MM, Islam MZ. Quality improvement of frozen cooked noodles by protein addition. Cryobiology 2024; 116:104934. [PMID: 38936594 DOI: 10.1016/j.cryobiol.2024.104934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
This study investigated the impact of protein enrichment on the physicochemical, cooking, textural, and color properties of frozen cooked noodles (FCN) stored for 0-3 weeks at -18 °C. Incorporating casein, egg white protein, and soy protein into the noodles significantly increased moisture content, with casein-enriched noodles showing the highest initial moisture levels. The addition of proteins also led to increased ash content, indicating improved nutritional quality. Protein enrichment resulted in reduced cooking loss and enhanced water retention during cooking and frozen storage. Casein-enriched noodles exhibited the highest water absorption capacity and the most substantial enhancement in textural properties, maintaining cohesiveness, gumminess, and elasticity better than egg white protein and soy protein during storage. The results indicated that egg white protein promotes intermolecular interactions, leading to enhanced color stability over time. These findings suggest that enriching with the protein could be a viable approach to elevate the overall quality of FCN.
Collapse
Affiliation(s)
- K Monalisa
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Md Toufik Hasan
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - A S M Sayem
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - M M Hoque
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - M Z Islam
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
10
|
Qiao K, Peng B. Freezing rate's impact on starch retrogradation, ice recrystallization, and quality of water-added and water-free quick-frozen rice noodles. Int J Biol Macromol 2024; 276:134047. [PMID: 39033893 DOI: 10.1016/j.ijbiomac.2024.134047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The study evaluated the effect of freezing rate on the quality of water-added quick-frozen rice noodles and water-free quick-frozen rice noodles. Results indicated that the retrogradation enthalpy, relative crystallinity, freezable water content, and cooking loss of water-added quick-frozen rice noodles were higher than those of water-free quick-frozen rice noodles with increasing storage time. Furthermore, ice recrystallization accelerated the deterioration of the quality of the rice noodles, resulting in the enlargement of the pores within the rice noodles and the formation of many pores on the surface. This phenomenon was particularly evident in the rice noodles of Y-40 °C (freezing with water at -40 °C) and Y-60 °C (freezing with water at -60 °C). After 28 days of frozen storage, the hardness increased by 83.83 % for rice noodles of Y-20 °C (freezing with water at -20 °C), while the hardness decreased by 51.68 % and 45.80 %, respectively, for rice noodles of Y-40 °C and Y-60 °C. Consequently, the impact of the freezing rate on the quality of water-added quick-frozen rice noodles is more pronounced than that of water-free quick-frozen rice noodles. Moreover, a higher freezing rate can delay the deterioration of the quality of frozen rice noodles by postponing starch retrogradation and inhibiting ice recrystallization.
Collapse
Affiliation(s)
- Kong Qiao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bangzhu Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University,Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
11
|
Kwon H, Hwang J, Cho Y, Lee S. Machine learning-enabled hyperspectral approaches for structural characterization of precooked noodles during refrigerated storage. Food Chem 2024; 450:139371. [PMID: 38640533 DOI: 10.1016/j.foodchem.2024.139371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
The structural features of precooked noodles during refrigerated storage were non-destructively characterized using hyperspectral imaging (HSI) technology along with conventional analytical methods. The precooked noodles displayed a more rigid texture and restricted water mobility over the storage period, derived from the recrystallization of starch. Dimensionality reduction techniques revealed robust correlations between the storage duration and HSI absorbance of the noodles, and from their loading plots, the specific peaks of the noodles related to their structural changes were identified at wavelengths of around 1160 and 1400 nm. The strong relationships between the HSI results of the noodles and their storage period/texture were confirmed by training four machine learning models on the HSI data. In particular, the support vector algorithm displayed the best prediction performance for classifying precooked noodles by storage period (98.3% accuracy) and for predicting the noodle texture (R2 = 0.914).
Collapse
Affiliation(s)
- Hyukjin Kwon
- Department of Food Science and Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea; Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Jeongin Hwang
- Department of Food Science and Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Younsung Cho
- Pulmuone Technology Center, Chungcheongbuk-do 28220, Republic of Korea
| | - Suyong Lee
- Department of Food Science and Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
12
|
Wan L, Wu X, Xu P, Xing Y, Xiao S, Fu Y, Wang X. Effects of freeze-thaw cycles on the quality of Hot-dry noodles: From the moisture, starch, and protein characteristics. Food Chem 2024; 447:138996. [PMID: 38492293 DOI: 10.1016/j.foodchem.2024.138996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/27/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Freeze-thaw cycles (FTC) could cause damage to food during storage. The effects of different FTC on Hot-dry noodles (HDN) in terms of quality, moisture, starch, and protein characteristics were studied. This study showed that FTC decreased the texture properties and water absorption of HDN. Meanwhile, cooking loss was significantly increased after FTC. The water content of HDN was decreased and water migration was increased during FTC. In addition, results showed that FTC destroyed the order structure and increased the crystallinity of starch in HDN. Under FTC, the disulfide bond of HDN was broken, the free sulfhydryl group was increased, and the electrophoretic patterns confirmed the protein depolymerization. The microstructure also showed that the gluten network became incomplete and starch was exposed outside the substrate. This study expounded the mechanism of HDN quality deterioration during FTC, which laid a foundation for the development and improvement of frozen and freeze-thaw noodles.
Collapse
Affiliation(s)
- Liuyu Wan
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiude Wu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peng Xu
- Wuhan Jinxiangyuan Food Co., Ltd., Wuhan 430040, China
| | - Yaonan Xing
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shensheng Xiao
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Fu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Xuedong Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
13
|
Pandi E, Proskhan BF, Kunjiappan S, Sundar K, Balakrishnan V. Fabrication, Characterization and Evaluation of Gallic Acid-Encapsulated Curdlan Gum Nanoparticles with Potential Application for Breast Cancer Treatment. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2024; 32:3071-3088. [DOI: 10.1007/s10924-023-03139-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/06/2025]
|
14
|
Hou L, Jia Z, Zhao K, Xiao S, Fu Y, Zhan W, Wu Y, Wang X. Effect of oxidized starch on the storage stability of frozen raw noodles: Water distribution, protein structure, and quality attributes. J Food Sci 2024; 89:4148-4161. [PMID: 38838085 DOI: 10.1111/1750-3841.17154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Freezing is a popular method of food preservation with multiple advantages. However, it may change the internal composition and quality of food. This study aimed to investigate the effect of modified starch on the storage stability of frozen raw noodles (FRNs) under refrigerated storage conditions. Oxidized starch (OS), a modified starch, is widely used in the food industry. In the present study, texture and cooking loss rate analyses showed that the hardness and chewiness of FRNs with added OS increased and the cooking loss rate decreased during the frozen storage process. Low-field nuclear magnetic resonance characterization confirmed that the water-holding capacity of FRNs with OS was enhanced. When 6% OS was added, the maximum freezable water content of FRNs was lower than the minimum freezable water content (51%) of FRNs without OS during freezing. Fourier-transform infrared spectroscopy showed that after the addition of OS, the secondary structures beneficial for structural maintenance were increased, forming a denser protein network and improving the microstructure of FRNs. In summary, the water state, protein structure, and quality characteristics of FRNs were improved by the addition of OS within an appropriate range.
Collapse
Affiliation(s)
- Lili Hou
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Ziyang Jia
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo, Ourense, Spain
| | - Kaifeng Zhao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Shensheng Xiao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Yang Fu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Wanzhi Zhan
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Yan Wu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Xuedong Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
15
|
Li X, Wu Y, Li C, Tong S, Zhang L, Jin J. Improvement in Noodle Quality and Changes in Microstructure and Disulfide Bond Content through the Addition of Pepper Straw Ash Leachate. Foods 2024; 13:1562. [PMID: 38790862 PMCID: PMC11121683 DOI: 10.3390/foods13101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Every year, a significant amount of pepper stalks are wasted due to low utilization. The ash produced from pepper stalks contains a significant amount of alkaline salts, which are food additives that can enhance the quality of noodles. Therefore, utilizing natural pepper straw ash to improve the quality of noodles shows promising development prospects. In this study, pepper straw ash leachate (PSAL) was extracted and added to noodles. The quality of the noodles gradually improved with the addition of PSAL, with the best effect observed at a concentration of 18% (PSAL mass/flour mass). This addition resulted in a 57.8% increase in noodle hardness, a 55.43% increase in chewiness, a 19.41% rise in water absorption rate, and a 13.28% increase in disulfide bond content. These alterations rendered the noodles more resilient during cooking, reducing their tendency to soften and thus enhancing chewiness and palatability. Incorporating PSAL also reduced cooking loss by 57.79%. Free sulfhydryl groups decreased by 5.1%, and scanning electron microscopy revealed a denser gluten network structure in the noodles, with more complete starch wrapping. This study significantly enhanced noodle quality and provided a new pathway for the application of pepper straw resources in the food industry.
Collapse
Affiliation(s)
| | - Yongjun Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, Guizhou, China; (X.L.); (C.L.); (S.T.); (L.Z.); (J.J.)
| | | | | | | | | |
Collapse
|
16
|
Liang Y, Zhu X, Liu H, Wang J, He B, Wang J. Effect of sanxan on the composition and structure properties of gluten in salt-free frozen-cooked noodles during freeze-thaw cycles. Food Chem X 2024; 21:101229. [PMID: 38406761 PMCID: PMC10884818 DOI: 10.1016/j.fochx.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
In this study, the mechanisms by which sanxan protected the quality of salt-free frozen-cooked noodles (SFFCNs) were investigated, with a focus on the composition and structural properties of gluten. The results showed that sanxan facilitated the formation of glutenin macropolymer and maintained the stabilization of glutenin subunits in freeze-thaw cycles (FTs). In terms of protein structure, sanxan weakened the disruption of secondary structure caused by FTs and increased the proportion of gauche-gauche-gauche (g-g-g) conformations in the disulfide (S-S) bonds bridge conformation. Simultaneously, sanxan reduced the exposure degree of tryptophan (Trp) and tyrosine (Tyr) residues on the protein surface. Moreover, the intermolecular interaction forces indicated that sanxan inhibited S-S bonds breakage and enhanced the intermolecular crosslinking of gluten through ion interactions, which was crucial for improving the stability of gluten. This study provides a more comprehensive theoretical basis for the role of sanxan in improving the quality of SFFCNs.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiuling Zhu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiayi Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
17
|
Ganie SA, Rather LJ, Assiri MA, Li Q. Recent innovations (2020-2023) in the approaches for the chemical functionalization of curdlan and pullulan: A mini-review. Int J Biol Macromol 2024; 260:129412. [PMID: 38262826 DOI: 10.1016/j.ijbiomac.2024.129412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Chemical modification represents a highly efficacious approach for enhancing the physicochemical characteristics and biological functionalities of natural polysaccharides. However, not all polysaccharides have considerable pharmacologic activity; so, appropriate chemical modification strategies can be selected in accordance with the distinct structural properties of polysaccharides to aid in improving and encouraging the presentation of their biological activities. Hence, there has been a growing interest in the chemical alteration of polysaccharides due to their various properties such as antioxidant, anticoagulant, antiviral, anticancer, biomedical, antibacterial, and immunomodulatory effects. This paper offers a comprehensive examination of recent scientific advancements produced over the past four years in the realm of unique chemical and functional modifications in curdlan and pullulan structures. This review aims to provide readers with an overview of the structural activity correlations observed in the backbone structures of curdlan and pullulan, as well as the diverse chemical modification processes employed for these polysaccharides. Additionally, the review aims to examine the effects of combining various bioactive molecules with chemically modified curdlan and pullulan and explore their potential applications in various important fields.
Collapse
Affiliation(s)
- Showkat Ali Ganie
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Luqman Jameel Rather
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Qing Li
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China.
| |
Collapse
|
18
|
Gao L, Guan M, Qin Y, Ji N, Wang Y, Li Y, Li M, Xiong L, Sun Q. Utilization of heat-induced curdlan gel to improve the cooking qualities of thermally sterilized fresh rice noodles. Int J Biol Macromol 2024; 262:129693. [PMID: 38278386 DOI: 10.1016/j.ijbiomac.2024.129693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Thermal sterilization is the most economical and efficient method to guarantee the shelf life of extruded fresh rice noodles, but it often leads to a high cooking breakage rate and poor elongation at break of the noodles. The aim of this study was to improve the edible quality of sterilized fresh rice noodles through the addition of low concentrations of curdlan (0.38 %-1.13 %), which can form a thermal-irreversible gel to resist high-temperature sterilization. Compared with the control group without curdlan, the cooking breakage rate of sterilized fresh rice noodles with 1.13 % curdlan decreased from 16.85 % to 5.22 %, the tensile strain increased from 91.15 % to 147.05 %, and the microstructure was more dense and uniform. The results showed that adding the proper amount of curdlan is an effective strategy to improve the quality of sterilized fresh rice noodles.
Collapse
Affiliation(s)
- Lin Gao
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Minghang Guan
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, 257100, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, 257100, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Man Li
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
19
|
Xia R, Fu M, Wang Z, Cheng W, Wu D, Tang X, Yang P. Effects of frozen storage on the quality characteristics of frozen whole buckwheat extruded noodles. Food Chem 2023; 429:136856. [PMID: 37459711 DOI: 10.1016/j.foodchem.2023.136856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 08/24/2023]
Abstract
The effects of frozen storage (-18 °C, 180 days) on the quality of frozen whole buckwheat extruded noodles (FWBEN) were investigated. The water content of FWBEN decreased, while the reheating time, water absorption, and dry consumption rate increased with prolonged storage time. Cooking loss increased from 3.20% to 4.31%. Texture analysis indicated that the hardness initially increased, then decreased. Microstructure results showed that the starch gel structure was damaged to a certain extent after storage for a longer period of time, whereas the porous structure became non-uniform with the appearance of cracks. The relative crystallinity gradually increased, and the freezable water content decreased with prolonged storage. These results demonstrated that FWBEN quality was affected by starch retrogradation and ice recrystallization. In general, FWBEN quality was relatively stable during 180 days of frozen storage at -18 °C.
Collapse
Affiliation(s)
- Ruhui Xia
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Meixia Fu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Weiwei Cheng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Di Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Peiqiang Yang
- Suzhou Niumag Analytical Instrument Corporation, Suzhou 215151, China
| |
Collapse
|
20
|
Li Y, Kong L, Zhang X, Wen R, Peng X. Protection of Whey Polypeptide on the Lipid Oxidation, Color, and Textural Stability of Frozen-Thawed Spanish Mackerel Surimi. Foods 2023; 12:4464. [PMID: 38137268 PMCID: PMC10742875 DOI: 10.3390/foods12244464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Repeated freeze-thaw (FT) cycles can have an impact on surimi quality. In this study, we used 0.02% BHA as a positive control group. We examined the effects of different concentrations (0%, 5%, 10%, and 15%) of whey protein hydrolysate (WPH) on surimi, focusing on alterations in color metrics (L* for brightness, a* for red-green, b* for yellow-blue, and overall whiteness), textural characteristics, and antioxidant capacity during various freeze-thaw (FT) cycles. The results showed that the lipid oxidant values of surimi, as well as its a* and b* values, rose as the number of FT cycles increased; whereas the adhesiveness, resilience, gumminess, and shear force dropped, as did L* and the whiteness values, leading to an overall darkening of color and gloss. By contrast, the study found that the addition of WPH could effectively slow down the decrease of surimi textural stability after repeated freeze-thawing, with the textural stability of the group with 15% WPH being significantly superior to those of the other groups (p < 0.05). Under the same number of cycles, adding 15% WPH to the experimental group could successfully lower total volatile basic nitrogen (TVB-N) and effectively increase the antioxidant activity of surimi. This finding suggested that 15% WPH had the greatest effect on increasing surimi FT stability. To conclude, it was proved that WPH can be added to frozen surimi and improve its quality.
Collapse
Affiliation(s)
| | | | | | | | - Xinyan Peng
- College of Life Sciences, Yantai University, Yantai 264005, China; (Y.L.); (L.K.); (X.Z.); (R.W.)
| |
Collapse
|
21
|
Wan L, Wang X, Liu H, Xiao S, Ding W, Pan X, Fu Y. Retrogradation inhibition of wheat starch with wheat oligopeptides. Food Chem 2023; 427:136723. [PMID: 37385058 DOI: 10.1016/j.foodchem.2023.136723] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Starch staling greatly reduces the cereal products quality, and the staling retardation becomes a focus in current research. The effect of wheat oligopeptide (WOP) on anti-staling properties of wheat starch (WS) was studied. Rheology property indicated that WOP reduced WS viscosity, showing more liquid-like behavior. WOP improved the water holding capacity, inhibited swelling power, and reduced the hardness of WS gels, which decreased from 1200 gf to 800 gf compared with the control after 30 days storage. Meanwhile, the water migration of WS gels were also reduced with WOP incorporation. The relative crystallinity of WS gel with 1% WOP was reduced by 13.3%, and the pore size and the microstructure of gels was improved with WOP. Besides, the short-range order degree reached the lowest value with 1% WOP. In conclusion, this study explained the interaction between WOP and WS, which was beneficial to the application of WOP in WS-based food.
Collapse
Affiliation(s)
- Liuyu Wan
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuedong Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongyan Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shensheng Xiao
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiuyun Pan
- Yiyantang (Yingcheng) Healthy Salt Manufacturing Co. LTD, Yingcheng 432400, China
| | - Yang Fu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
22
|
Li J, Liu M, Qin G, Wu X, Li M, Sun L, Dang W, Zhang S, Liang Y, Zheng X, Li L, Liu C. Classification, gelation mechanism and applications of polysaccharide-based hydrocolloids in pasta products: A review. Int J Biol Macromol 2023; 248:125956. [PMID: 37487993 DOI: 10.1016/j.ijbiomac.2023.125956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/27/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
Polysaccharide-based hydrocolloids (PBHs) are a group of water-soluble polysaccharides with high molecular weight hydrophilic long-chain molecules, which are widely employed in food industry as thickeners, emulsifiers, gelling agents, and stabilizers. Pasta products are considered to be an important source of nutrition for humans, and PBHs show great potential in improving their quality and nutritional value. The hydration of PBHs to form viscous solutions or sols under specific processing conditions is a prerequisite for improving the stability of food systems. In this review, PBHs are classified in a novel way according to food processing conditions, and their gelation mechanisms are summarized. The application of PBHs in pasta products prepared under different processing methods (baking, steaming/cooking, frying, freezing) are reviewed, and the potential mechanism of PBHs in regulating pasta products quality is revealed from the interaction between PBHs and the main components of pasta products (protein, starch, and water). Finally, the safety of PBHs is critically explored, along with future perspectives. This review provides a scientific foundation for the development and specific application of PBHs in pasta products, and provides theoretical support for improving pasta product quality.
Collapse
Affiliation(s)
- Jie Li
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mei Liu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Guolan Qin
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xinyue Wu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Maozhi Li
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Le Sun
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wenqian Dang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shenying Zhang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueling Zheng
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Limin Li
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chong Liu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
23
|
Liang Y, Song J, Wang J, Liu H, Wu X, He B, Zhang X, Wang J. Investigating the Effects of NaCl on the Formation of AFs from Gluten in Cooked Wheat Noodles. Int J Mol Sci 2023; 24:9907. [PMID: 37373055 DOI: 10.3390/ijms24129907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
To clarify the effect of NaCl concentration (0-2.0%) on the formation of amyloid fibrils (AFs) in cooked wheat noodles, the morphology, surface hydrophobicity, secondary structure, molecular weight distribution, microstructure, and crystal structure of AFs were investigated in this paper. Fluorescence data and Congo red stain images confirmed the presence of AFs and revealed that the 0.4% NaCl concentration promoted the production of AFs. The surface hydrophobicity results showed that the hydrophobicity of AFs increased significantly from 3942.05 to 6117.57 when the salt concentration increased from 0 to 0.4%, indicating that hydrophobic interactions were critical for the formation of AFs. Size exclusion chromatography combined with gel electrophoresis plots showed that the effect of NaCl on the molecular weight of AFs was small and mainly distributed in the range of 5-7.1 KDa (equivalent to 40-56 amino acid residues). X-ray diffraction and AFM images showed that the 0.4% NaCl concentration promoted the formation and longitudinal growth of AFs, while higher NaCl concentrations inhibited the formation and expansion of AFs. This study contributes to the understanding of the mechanism of AF formation in wheat flour processing and provides new insight into wheat gluten aggregation behavior.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiayang Song
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiayi Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xingquan Wu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xia Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
24
|
Wang YH, Zhang YR, Wang X, Yang YY, Guo WM, Fei YX, Qiao L. Improving the surface tackiness of frozen cooked noodles by the addition of glutenin, gliadin, and gluten. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
25
|
Study on the quality characteristics of hot-dry noodles by microbial polysaccharides. Food Res Int 2023; 163:112200. [PMID: 36596138 DOI: 10.1016/j.foodres.2022.112200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The effect of curdlan gum (CG), gellan gum (GG), and xanthan gum (XG) on the quality characteristics of hot-dry noodles (HDN) was investigated. The rheology properties were used to evaluate the quality of the dough, the textural, viscosity, cooking characteristics and water states were investigated to study the quality changes of HDN. Three microbial polysaccharides were found that it could improve the quality of wheat flour and significantly increase the starch viscosity of HDN and delay the water migration rate of HDN. When 0.2% CG, 0.5% GG, and 0.5% XG were added, the HDN showed the best flour swelling power, texture, and tensile properties, and the structure of gluten network was significantly improved. The flourier transform infrared spectroscopy results showed that microbial polysaccharides with appropriate concentrations changed the formation of hydrogen bond in HDN, decreased α-helix and increased β-turn content. Meanwhile, the relative continuous and complete gluten network was formed, which could be proven by microstructure observation. This study provides a reference for functionality applications of HDN with microbial polysaccharides.
Collapse
|
26
|
Tudu M, Samanta A. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111801] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Ma Y, Xiu W, Wang X, Yu S, Luo Y, Gu X. Structural characterization and in vitro antioxidant and hypoglycemic activities of degraded polysaccharides from sweet corncob. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Sun Q, Zhang H, Yang X, Hou Q, Zhang Y, Su J, Liu X, Wei Q, Dong X, Ji H, Liu S. Insight into muscle quality of white shrimp (Litopenaeus vannamei) frozen with static magnetic-assisted freezing at different intensities. Food Chem X 2022; 17:100518. [DOI: 10.1016/j.fochx.2022.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
|
29
|
Evaluation on the water state of frozen dough and quality of steamed bread with proper amount of sanxan added during freeze-thawed cycles. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Effects of freeze-thaw cycles on the quality of frozen raw noodles. Food Chem 2022; 387:132940. [DOI: 10.1016/j.foodchem.2022.132940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/15/2022]
|
31
|
Curdlan-induced rheological, thermal and structural property changes of wheat dough components during heat treatment. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Zhang Y, Wang Y, Shen J, Guo Y, Fei Y, Yu X, Zhang G, Guo W, Yan M. Effects of wheat flours with different farinograph and pasting characteristics on the surface tackiness of frozen cooked noodles. Cereal Chem 2022. [DOI: 10.1002/cche.10583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ya‐Ru Zhang
- College of Food Science and EngineeringHenan University of TechnologyZhengzhou450001Henan ProvinceChina
| | - Yuan‐Hui Wang
- College of Food Science and EngineeringHenan University of TechnologyZhengzhou450001Henan ProvinceChina
- Henan Province Wheat‐flour Staple Food Engineering Technology Research CentreHenan University of TechnologyZhengzhou450001Henan ProvinceChina
| | - Jin‐Qi Shen
- College of Food Science and EngineeringHenan University of TechnologyZhengzhou450001Henan ProvinceChina
| | - Yu‐Ying Guo
- College of Food Science and EngineeringHenan University of TechnologyZhengzhou450001Henan ProvinceChina
| | - Ying‐Xiang Fei
- College of Food Science and EngineeringHenan University of TechnologyZhengzhou450001Henan ProvinceChina
| | - Xiao‐Yu Yu
- College of Food Science and EngineeringHenan University of TechnologyZhengzhou450001Henan ProvinceChina
| | - Guo‐Zhi Zhang
- College of Food Science and EngineeringHenan University of TechnologyZhengzhou450001Henan ProvinceChina
| | - Wei‐Min Guo
- Zhengzhou Tobacco Research Institute of CNTCZhengzhou450001Henan ProvinceChina
| | - Mei‐Hui Yan
- College of Food Science and EngineeringHenan University of TechnologyZhengzhou450001Henan ProvinceChina
- Henan Province Wheat‐flour Staple Food Engineering Technology Research CentreHenan University of TechnologyZhengzhou450001Henan ProvinceChina
| |
Collapse
|
33
|
Liu H, Liang Y, Guo S, Liu M, Chen Z, He B, Zhang X, Wang J. Understanding the strengthening effect of curdlan on the quality of frozen cooked noodles: studies on water characteristics and migration during cooking. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hao Liu
- College of Biological Engineering Henan University of Technology Zhengzhou 450001 China
| | - Ying Liang
- College of Biological Engineering Henan University of Technology Zhengzhou 450001 China
| | - Shibo Guo
- College of Biological Engineering Henan University of Technology Zhengzhou 450001 China
| | - Mei Liu
- College of Food Science and Engineering Henan University of Technology Zhengzhou 450001 China
| | - Zilu Chen
- College of Biological Engineering Henan University of Technology Zhengzhou 450001 China
| | - Baoshan He
- College of Food Science and Engineering Henan University of Technology Zhengzhou 450001 China
| | - Xia Zhang
- College of Biological Engineering Henan University of Technology Zhengzhou 450001 China
| | - Jinshui Wang
- College of Biological Engineering Henan University of Technology Zhengzhou 450001 China
| |
Collapse
|
34
|
Understanding the influence of curdlan on the quality of frozen cooked noodles during the cooking process. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Liang Y, Chen Z, Liu M, Qu Z, Liu H, Song J, Zhu M, Zhang X, He B, Wang J. Effect of curdlan on the aggregation behavior and structure of gluten in frozen-cooked noodles during frozen storage. Int J Biol Macromol 2022; 205:274-282. [PMID: 35192902 DOI: 10.1016/j.ijbiomac.2022.02.085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/07/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
Due to the crucial role of gluten network in maintaining the tensile properties of frozen-cooked noodles (FCNs), the underlying mechanism of protective effect of curdlan on FCNs quality during frozen storage was explored from the perspective of aggregation behavior and structure of gluten in this study. The results showed that curdlan weakened the depolymerization behavior of gluten proteins through inhibiting the disruption of disulfide bonds; Curdlan stabilized the secondary structure of gluten proteins by restraining the transformation of compact α-helices to other secondary structures; Atomic force microscope results implied that curdlan inhibited the aggregation of gluten chains; Confocal laser scanning microscopy observation analyzed by AngioTool software indicated that the connectivity and uniformity of gluten network were enhanced because of curdlan. This study may provide more comprehensive theories for the strengthening effect of curdlan on FCNs quality from the perspective of gluten structure and contribute to the quality improvement of FCN in the food technology field.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zilu Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mei Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhuoting Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiayang Song
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mengfei Zhu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xia Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
36
|
Liu H, Liang Y, Chen Z, Liu M, Qu Z, He B, Zhang X, Wang J. Effect of curdlan on the aggregation behavior of gluten protein in frozen cooked noodles during cooking. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2021.103395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
37
|
Lee E, Kim J, Kim E, Choi YJ, Hahn J. The effect of curdlan and the resting process on the quality of the dried whole tofu noodles. Food Sci Biotechnol 2022; 31:61-68. [PMID: 35059230 PMCID: PMC8733043 DOI: 10.1007/s10068-021-01020-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
The aim of this study is to make dried noodles having high contents of whole tofu (60% (w/w)). To control the high moisture of the whole tofu, curdlan was added and a high-temperature resting process was applied. The elasticity of the dough sample rested at 45°C for 45 min increased over 50% more than the non-rested one. The addition of curdlan and the high-temperature resting process helped to form a compact internal structure in the dough, which might have been induced by the gelation of curdlan and the swelling of starch. In addition, these treatments resulted in about 20% and 15% reduction in cooking time and cooking loss, respectively. Whole tofu noodles having high protein content with improved texture and cookability was developed. These results could be helpful to the development of the bread based on a high hydration dough. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10068-021-01020-9.
Collapse
Affiliation(s)
- Euiji Lee
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| | - Junghoon Kim
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdongro, 8 Kwangjin-gu, Seoul, 05006 Korea
| | - Eunghee Kim
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
- Center for Food and Bioconvergence, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| | - Jungwoo Hahn
- Center for Food and Bioconvergence, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
38
|
Biosynthesis and applications of curdlan. Carbohydr Polym 2021; 273:118597. [PMID: 34560997 DOI: 10.1016/j.carbpol.2021.118597] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/01/2023]
Abstract
Curdlan is widely applied in the food and pharmaceutical industries. This review focuses on the biosynthetic pathways, regulatory mechanisms and metabolic engineering strategies for curdlan production. Firstly, curdlan biosynthesis is discussed. Furthermore, various strategies to increase curdlan production are summarized from four aspects, including the overexpression of genes for curdlan biosynthesis, weakening/knockdown of genes from competing pathways, increasing the supply of curdlan precursors, and optimization of fermentation conditions. Moreover, the emerging and advanced applications of curdlan are introduced. Finally, the challenges that are frequently encountered during curdlan biosynthesis are noted with a discussion of directions for curdlan production.
Collapse
|
39
|
Zhao B, Fu S, Li H, Li H, Liu C, Chen Z. Effect of storage conditions on the quality of frozen steamed bread. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Beibei Zhao
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Shijian Fu
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Hua Li
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Huifang Li
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Changhong Liu
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Zhicheng Chen
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| |
Collapse
|
40
|
Zhao B, Fu S, Li H, Li H, Wang Y, Li Z, Liu C. Quality evaluation of steam reheated frozen steamed bread. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Jiang J, Gao H, Zeng J, Zhang L, Wang F, Su T, Li G. Determination of subfreezing temperature and gel retrogradation characteristics of potato starch gel. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Hong T, Ma Y, Yuan Y, Guo L, Xu D, Wu F, Xu X. Understanding the influence of pullulan on the quality changes, water mobility, structural properties and thermal properties of frozen cooked noodles. Food Chem 2021; 365:130512. [PMID: 34243121 DOI: 10.1016/j.foodchem.2021.130512] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
Pullulan is widely applied in the food industry due to its unique physicochemical properties, but little information is known about its effects on the quality of frozen cooked noodles (FCNs), nor the underlying mechanism. In this study, the addition of 0.3% and 0.5% pullulan resulted in better texture and cooking properties, and minor chrominance differences, and it significantly (P < 0.05) decreased the freezable water content and retarded the water migration. Pullulan inhibited the depolymerization of the glutenin macropolymer during 0-8 weeks of frozen storage. Meanwhile, pullulan caused slightly decreased α-helixes and increased β-turns, as well as decreased degradation temperature, further suggesting that pullulan influenced the gluten network. A more compact microstructure was shown in the pullulan-fortified FCNs. This study provides a theoretical basis for the positive effects of pullulan on the quality of FCNs from the perspectives of water state and protein structure.
Collapse
Affiliation(s)
- Tingting Hong
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Yue Ma
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Yirong Yuan
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Lunan Guo
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Dan Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Fengfeng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| |
Collapse
|
43
|
Quality Evaluation, Storage Stability, and Sensory Characteristics of Wheat Noodles Incorporated with Isomaltodextrin. PLANTS 2021; 10:plants10030578. [PMID: 33803775 PMCID: PMC8003340 DOI: 10.3390/plants10030578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 11/20/2022]
Abstract
Wheat noodles incorporated with isomaltodextrin were assessed in relation to physicochemical properties (color), microstructure features, biochemical composition (fiber profile), cooking properties, textural attributes, and sensory evaluations during different storage temperatures (25, 4, −20 °C) and periods (0, 3, 6, 9, 12, 15, 18, 21, 24 months). Meanwhile, an accelerated study was also carried out at 40 °C storage conditions for 12 months to evaluate the fiber profile changes. Under different conditions, the overall quality of both raw and cooked noodle samples depended slightly on both the type and amount of added fiber isomaltodextrin, resistant starch (RS), insoluble high-molecular-weight dietary fiber (IHMWDF), and soluble high-molecular-weight dietary fiber (SHMWDF). However, this significantly changed for the fiber profile under 40 °C of storage for 12 months. Cooking quality, fiber profile, and color parameter did not differ by storage at −20 °C after 24 months than at 0 months, and noodles only slightly differed in texture and sensory characteristics. On sensory analysis, noodle samples were acceptable by panelists, with an acceptability score >5. In short, storage temperature is one of the most important factors in preserving food stability and retail properties. Isomaltodextrin noodles samples should be stored at low temperature to preserve the product functionality.
Collapse
|
44
|
|
45
|
Zhu F. Frozen steamed breads and boiled noodles: Quality affected by ingredients and processing. Food Chem 2021; 349:129178. [PMID: 33607545 DOI: 10.1016/j.foodchem.2021.129178] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 01/11/2023]
Abstract
Chinese steamed breads (CSB) and noodles are staple foods for many people. The production of frozen steamed products and boiled noodles has kept increasing. This is due to the increasing demand of ready-to-eat frozen food products from the market. Frozen storage significantly increases the self-life of the products and reduces the production costs. On the other hand, the freezing and frozen storage lead to quality loss of the frozen products. This review summarizes effects of freezing and frozen storage on diverse quality attributes (e.g., structural and textural properties) of frozen northern-type steamed breads and boiled noodles. Food safety of the frozen products related to the COVID-19 pandemic is discussed. To counteract the quality loss of the frozen products, suitable processing methods, selection of basic ingredients and uses of various food additives can be done. Research gaps to improve the textural, cooking and nutritional quality of frozen CSB and noodles are suggested.
Collapse
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
46
|
Liang Y, Qu Z, Liu M, Zhu M, Zhang X, Wang L, Jia F, Zhan X, Wang J. Further interpretation of the strengthening effect of curdlan on frozen cooked noodles quality during frozen storage: Studies on water state and properties. Food Chem 2020; 346:128908. [PMID: 33401084 DOI: 10.1016/j.foodchem.2020.128908] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
Curdlan has been applied to weaken the quality deterioration of frozen cooked noodles (FCN) during frozen storage. However, the underlying mechanism is still unclear. In this paper, an A/LKB-F probe was used for texture profile analysis and mercury intrusion was firstly used for analyzing ice crystals state in three dimensions. Meanwhile, a systematic study on the water state was conducted, as well as the freeze-thawed stability of FCN under curdlan intervention during frozen storage. The results showed that 0.5% curdlan significantly (P < 0.05) alleviated the decrement in hardness, chewiness and extension, and enhanced the freeze-thawed stability of FCN. This was closely associated with the fact that the addition of curdlan minimized freezable water content, inhibited water mobility and migration, and raised the homogeneity of ice crystals in FCN. This study provides more comprehensive theories for the strengthening effect of curdlan on FCN quality from the perspective of water state.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhuoting Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mei Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mengfei Zhu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xia Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Le Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Feng Jia
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaobei Zhan
- Ministry of Education, Key Lab Carbohydrate Chemical and Biotechnology & School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|