1
|
Shewry PR, Prins A, Kosik O, Lovegrove A. Challenges to Increasing Dietary Fiber in White Flour and Bread. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13513-13522. [PMID: 38834187 PMCID: PMC11191685 DOI: 10.1021/acs.jafc.4c02056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 06/06/2024]
Abstract
Increasing the intake of dietary fiber from staple foods is a key strategy to improve the health of consumers. White bread is an attractive vehicle to deliver increased fiber as it is widely consumed and available to all socio-economic groups. However, fiber only accounts for about 4% of the dry weight of white flour and bread compared to 10-15% in whole grain bread and flour. We therefore discuss the challenges and barriers to developing and exploiting new types of wheat with high fiber content in white flour. These include defining and quantifying individual fiber components and understanding how they are affected by genetic and environmental factors. Rapid high throughput assays suitable for determining fiber content during plant breeding and in grain-utilizing industries are urgently required, while the impact of fiber amount and composition on flour processing quality needs to be understood. Overcoming these challenges should have significant effects on human health.
Collapse
Affiliation(s)
| | - Anneke Prins
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K.
| | - Ondrej Kosik
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K.
| | | |
Collapse
|
2
|
Hernández-Espinosa N, Posadas-Romano G, Dreisigacker S, Crossa J, Crespo L, Ibba MI. Efficient arabinoxylan assay for wheat: Exploring variability and molecular marker associations in Wholemeal and refined flour. J Cereal Sci 2024; 117:103897. [PMID: 38883418 PMCID: PMC11177631 DOI: 10.1016/j.jcs.2024.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 06/18/2024]
Abstract
In this study, we present a modified high throughput phloroglucinol colorimetric assay for the quantification of arabinoxylans (AX) in wheat named PentoQuant. The method was downscaled from a 10 ml glass tube to 2 ml microcentrifuge tube format, resulting in a fivefold increase in throughput while concurrently reducing the overall cost and manual labor required for the analysis. Comparison with established colorimetric assays and gas chromatography validates the modified protocol, demonstrating its superior repeatability, rapidity, and simplicity. The effectiveness of the protocol was tested on 606 unique whole meal (WM) and refined flour (RF) bread wheat samples which revealed the presence of more than a twofold variation in both the soluble (WE-AX) and total (TOT-AX) AX fractions in WM (TOT-AX = 31.9-76.1 mg/g; WE-AX = 4.4-12.6 mg/g) and RF (TOT-AX = 7.7-22.4 mg/g; WE-AX = 3.9-11.4 mg/g). Results obtained from the AX quantification were used to test the effectiveness of four molecular markers associated with AX variation and targeting two major genomic regions on the 1BL and 6BS chromosomes. These markers appeared to be particularly relevant for the WE-AX fraction, providing insights to enable marker-assisted breeding.
Collapse
Affiliation(s)
- Nayelli Hernández-Espinosa
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| | - Gabriel Posadas-Romano
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| | - Susanne Dreisigacker
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| | - Jose Crossa
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| | - Leonardo Crespo
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| | - Maria Itria Ibba
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| |
Collapse
|
3
|
Zamorski R, Baba K, Noda T, Sawada R, Miyata K, Itoh T, Kaku H, Shibuya N. Variety-dependent accumulation of glucomannan in the starchy endosperm and aleurone cell walls of rice grains and its possible genetic basis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:321-336. [PMID: 38434111 PMCID: PMC10905567 DOI: 10.5511/plantbiotechnology.23.0809a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/09/2023] [Indexed: 03/05/2024]
Abstract
Plant cell wall plays important roles in the regulation of plant growth/development and affects the quality of plant-derived food and industrial materials. On the other hand, genetic variability of cell wall structure within a plant species has not been well understood. Here we show that the endosperm cell walls, including both starchy endosperm and aleurone layer, of rice grains with various genetic backgrounds are clearly classified into two groups depending on the presence/absence of β-1,4-linked glucomannan. All-or-none distribution of the glucomannan accumulation among rice varieties is very different from the varietal differences of arabinoxylan content in wheat and barley, which showed continuous distributions. Immunoelectron microscopic observation suggested that the glucomannan was synthesized in the early stage of endosperm development, but the synthesis was down-regulated during the secondary thickening process associated with the differentiation of aleurone layer. Significant amount of glucomannan in the cell walls of the glucomannan-positive varieties, i.e., 10% or more of the starchy endosperm cell walls, and its close association with the cellulose microfibril suggested possible effects on the physicochemical/biochemical properties of these cell walls. Comparative genomic analysis indicated the presence of striking differences between OsCslA12 genes of glucomannan-positive and negative rice varieties, Kitaake and Nipponbare, which seems to explain the all-or-none glucomannan cell wall trait in the rice varieties. Identification of the gene responsible for the glucomannan accumulation could lead the way to clarify the effect of the accumulation of glucomannan on the agronomic traits of rice by using genetic approaches.
Collapse
Affiliation(s)
- Ryszard Zamorski
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8642, Japan
- Faculty of Agriculture and Biotechnology, University of Science and Technology, Bydgoszcz 85-796, Poland
| | - Kei’ichi Baba
- Wood Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takahiro Noda
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Hokkaido Agricultural Research Center, NARO, Memuro, Hokkaido 082-0081, Japan
| | - Rimpei Sawada
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Plant Biotechnology Laboratory, Life Science Institute, Mitsui Toatsu Chemicals Inc., Mobara, Chiba 297-0017, Japan
| | - Kana Miyata
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Takao Itoh
- Wood Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hanae Kaku
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Naoto Shibuya
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8642, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
4
|
Shewry PR, Joy EJM, De La Revilla LS, Hansen A, Brennan J, Lovegrove A. Increasing fibre in white flour and bread: Implications for health and processing. NUTR BULL 2023; 48:587-593. [PMID: 37904716 PMCID: PMC10947016 DOI: 10.1111/nbu.12648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Dietary fibre is beneficial for human health, but dietary intakes are below recommended levels in most countries. Cereals are the major source of dietary fibre in Western diets, with bread providing about 20% of the daily intake in the United Kingdom. Despite the promotion of fibre-rich wholegrain products, white bread (which has a lower fibre content) remains dominant in many countries due to cultural preferences. Increasing the fibre content of white bread and other products made from white flour is therefore an attractive strategy for increasing fibre intake. This can be achieved by exploiting genetic variation in wheat without major effects on the processing quality or the consumer acceptability of products. Modelling data for food consumption in the United Kingdom shows that increasing the fibre content of white flour by 50% (from about 4% to 6% dry weight) and in wholegrain by 20% will increase total fibre intake by 1.04 g/day and 1.41 g/day in adult females and males, respectively. Furthermore, in vitro studies indicate that the increased fibre content of white bread should reduce the rate of starch digestion and glucose release in the human gastrointestinal tract.
Collapse
Affiliation(s)
| | - Edward J. M. Joy
- Rothamsted ResearchHarpendenUK
- London School of Hygiene & Tropical MedicineLondonUK
| | | | - Annalene Hansen
- Rothamsted ResearchHarpendenUK
- Aberystwyth University, PenglaisAberystwythUK
| | | | | |
Collapse
|
5
|
Lee MH, Park J, Kim KH, Kim KM, Kang CS, Lee GE, Choi JY, Shon J, Ko JM, Choi C. Genome-Wide Association Study of Arabinoxylan Content from a 562 Hexaploid Wheat Collection. PLANTS (BASEL, SWITZERLAND) 2023; 12:184. [PMID: 36616313 PMCID: PMC9823421 DOI: 10.3390/plants12010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The selection of wheat varieties with high arabinoxylan (AX) levels could effectively improve the daily consumption of dietary fiber. However, studies on the selection of markers for AX levels are scarce. This study analyzed AX levels in 562 wheat genotypes collected from 46 countries using a GWAS with the BLINK model in the GAPIT3. Wheat genotypes were classified into eight subpopulations that exhibited high genetic differentiation based on 31,926 SNP loci. Eight candidate genes were identified, among which those encoding F-box domain-containing proteins, disease resistance protein RPM1, and bZIP transcription factor 29 highly correlated with AX levels. The AX level was higher in the adenine allele than in the guanine alleles of these genes in the wheat collection. In addition, the AX level was approximately 10% higher in 3 adenine combinations than 2 guanine, 1 adenine, and 3 guanine combinations in genotypes of three genes (F-box domain-containing proteins, RPM1, and bZIP transcription factor 29). The adenine allele, present in 97.46% of AX-95086356 SNP, exhibited a high correlation with AX levels following classification by country. Notably, the East Asian wheat genotypes contain high adenine alleles in three genes. These results highlight the potential of these three SNPs to serve as selectable markers for high AX content.
Collapse
|
7
|
Bharathi R, Dai Y, Tyl C, Schoenfuss T, Annor G. The effect of tempering on protein properties and arabinoxylan contents of intermediate wheatgrass (
Thinopyrum intermedium
) flour. Cereal Chem 2021. [DOI: 10.1002/cche.10505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Radhika Bharathi
- Department of Food Science and Nutrition University of Minnesota Saint Paul Minnesota USA
| | - Yaxi Dai
- Department of Food Science and Technology University of Georgia Athens Georgia USA
| | - Catrin Tyl
- Department of Food Science and Technology University of Georgia Athens Georgia USA
| | - Tonya Schoenfuss
- Department of Food Science and Nutrition University of Minnesota Saint Paul Minnesota USA
| | - George Amponsah Annor
- Department of Food Science and Nutrition University of Minnesota Saint Paul Minnesota USA
| |
Collapse
|
8
|
Ibba MI, Juliana P, Hernández-Espinosa N, Posadas-Romano G, Dreisigacker S, Sehgal D, Crespo-Herrera L, Singh R, Guzmán C. Genome-wide association analysis for arabinoxylan content in common wheat (T. Aestivum L.) flour. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|