1
|
Desclaux D, Canaguier E, Avit V, Boury-Esnault A, Menguy E, Moinet K, Younso A, Samson MF. Peasant vs. Industrial durum wheat pasta: Impact of each processing step on protein solubility and digestibility. Food Res Int 2024; 178:113937. [PMID: 38309907 DOI: 10.1016/j.foodres.2024.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Some people with Non-Coeliac Gluten (or Wheat) Sensitivity (NCGS) declare that they can consume peasant pasta without the usual inconvenience they experience after eating industrial pasta. The main differences between peasant and industrial pasta lie in the varieties used (old vs. modern), and the production chain (grain milling, semolina hydration and mixing, extrusion or lamination, drying and packaging). Yet, the varieties, the material and the method used by the peasants and by the industrial sector to make pasta differ at each stage. The impact of each of these stages was analyzed on protein quantity and quality from semolina to cooked pasta. Grown in the same conditions, the old variety (cv. Bidi 17) used by farmers contained much more protein than the modern variety (cv. Anvergur) recommended by industry and its pasta was better-digested in-vitro. Focusing on cooked pasta, milling had a great impact on not easily soluble proteins (DTE-soluble proteins): pasta made from stone-milled grains (peasant method) had less DTE-soluble proteins than pasta made from roller-milled grains (industrial method) and a higher amount of in-vitro digested proteins. The mixing and extrusion step mainly affected the easily soluble proteins (SDS-soluble proteins). The amount of such proteins was greater for farmer cooked pasta (non-monitored extrusion) than for industrial ones (monitored extrusion). Concerning the drying step, the proportion of SDS-soluble proteins was higher for the pasta dried at low temperature (peasant method), compared to high temperature (industrial method). Thus, the observation that peasant cooked pasta would be more digestible than industrial pasta seems to be due mainly to variety (61%), to a lesser extent to grinding on a stone-mill (22%) and extrusion on non-monitored conditions (16%) and finally a little (1%) to drying at low temperature and therefore longer.
Collapse
Affiliation(s)
| | - Elodie Canaguier
- IATE, Univ Montpellier, INRAE, L'Institut Agro Montpellier, Montpellier, France
| | | | - Anaïs Boury-Esnault
- IATE, Univ Montpellier, INRAE, L'Institut Agro Montpellier, Montpellier, France
| | - Ewen Menguy
- INRAE, UE DiaScope, UE 0398, Mauguio, France
| | | | - Ahmad Younso
- MISTEA, Univ Montpellier, INRAE, L'Institut Agro Montpellier, Montpellier, France
| | | |
Collapse
|
2
|
Samson MF, Boury-Esnault A, Menguy E, Avit V, Canaguier E, Bernazeau B, Lavene P, Chiffoleau Y, Akermann G, Moinet K, Desclaux D. Farmer vs. Industrial Practices: Impact of Variety, Cropping System and Process on the Quality of Durum Wheat Grains and Final Products. Foods 2023; 12:foods12051093. [PMID: 36900610 PMCID: PMC10000652 DOI: 10.3390/foods12051093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
The consumption of artisanal and organic pasta made on-farm from ancient varieties is increasing in France. Some people, namely, those suffering from digestive disorders following the consumption of industrial pasta, consider these artisanal pasta to be more digestible. Most of them have linked these digestive disorders to the ingestion of gluten. We analyzed in this study the impact of industrial and artisanal practices on the protein quality of durum wheat products. The varieties recommended by the industry (IND) were compared to those used by farmers (FAR): the FAR being on average much richer in protein. However, the solubility of these proteins analyzed by Size Exclusion-High Performance Liquid Chromatography (SE-HPLC) and their in vitro proteolysis by digestive enzymes vary little between the two groups of varieties, while differences between varieties in each group are observable. The location of grain production and the tested cropping systems (zero vs. low input) have a low impact on protein quality. Yet, more contrasting modalities should be studied to validate this point. The type of production process (artisanal vs. industrial) is, among those studied, the factor having the greatest impact on protein compositionPasta produced by the artisanal method contains a higher sodium dodecyl sulfate (SDS)-soluble protein fraction and are more in-vitro proteolyzed. Whether these criteria are indicative of what happens during a consumer's digestion remains to be determined. It also remains to be assessed which key stages of the process have the greatest influence on protein quality.
Collapse
Affiliation(s)
| | | | - Ewen Menguy
- INRAE, UE DiaScope, UE 0398, 34130 Mauguio, France
| | | | - Elodie Canaguier
- IATE, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | | | | | - Yuna Chiffoleau
- INNOVATION, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34060 Montpellier, France
| | - Gregori Akermann
- INNOVATION, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34060 Montpellier, France
| | | | | |
Collapse
|
3
|
Illueca F, Moreno A, Calpe J, Nazareth TDM, Dopazo V, Meca G, Quiles JM, Luz C. Bread Biopreservation through the Addition of Lactic Acid Bacteria in Sourdough. Foods 2023; 12:foods12040864. [PMID: 36832942 PMCID: PMC9956393 DOI: 10.3390/foods12040864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Nowadays, the consumer seeks to replace synthetic preservatives with biopreservation methods, such as sourdough in bread. Lactic acid bacteria (LAB) are used as starter cultures in many food products. In this work, commercial yeast bread and sourdough breads were prepared as controls, as well as sourdough breads with L. plantarum 5L1 lyophilized. The impact of L. plantarum 5L1 on the properties of bread was studied. Antifungal compounds and the impact on the protein fraction by the different treatments in doughs and breads were also analyzed. In addition, the biopreservation capacity of the treatments in breads contaminated with fungi was studied and the mycotoxin content was analyzed. The results showed significant differences with respect to the controls in the properties of the bread and a higher total phenolic and lactic acid content in breads with higher amounts of L. plantarum 5L1. In addition, there was a higher content of alcohol and esters. Furthermore, adding this starter culture produced hydrolysis of the 50 kDa band proteins. Finally, the higher concentration of L. plantarum 5L1 delayed fungal growth and reduced the content of AFB1 and AFB2 compared to the control.
Collapse
Affiliation(s)
- Francisco Illueca
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Ana Moreno
- AgrotechUV Incubator, Scientific Park of University of Valence, St. Catedrático Agustín Escardino 9, 46980 Paterna, Spain
| | - Jorge Calpe
- AgrotechUV Incubator, Scientific Park of University of Valence, St. Catedrático Agustín Escardino 9, 46980 Paterna, Spain
| | - Tiago de Melo Nazareth
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Correspondence: ; Tel.: +34-963-544-959
| | - Victor Dopazo
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giuseppe Meca
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Juan Manuel Quiles
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Carlos Luz
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
4
|
Poggi GM, Aloisi I, Corneti S, Esposito E, Naldi M, Fiori J, Piana S, Ventura F. Climate change effects on bread wheat phenology and grain quality: A case study in the north of Italy. FRONTIERS IN PLANT SCIENCE 2022; 13:936991. [PMID: 36017264 PMCID: PMC9396297 DOI: 10.3389/fpls.2022.936991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Increasing temperatures, heat waves, and reduction of annual precipitation are all the expressions of climate change (CC), strongly affecting bread wheat (Triticum aestivum L.) grain yield in Southern Europe. Being temperature the major driving force of plants' phenological development, these variations also have effects on wheat phenology, with possible consequences on grain quality, and gluten protein accumulation. Here, through a case study in the Bolognese Plain (North of Italy), we assessed the effects of CC in the area, the impacts on bread wheat phenological development, and the consequences on grain gluten quality. The increasing trend in mean annual air temperature in the area since 1952 was significant, with a breakpoint identified in 1989, rising from 12.7 to 14.1°C, accompanied by the signals of increasing aridity, i.e., increase in water table depth. Bread wheat phenological development was compared in two 15-year periods before and after the breakpoint, i.e., 1952-1966 (past period), and 2006-2020 (present period), the latest characterized by aridity and increased temperatures. A significant shortening of the chronological time necessary to reach the main phenological phases was observed for the present period compared to the past period, finally shortening the whole life cycle. This reduction, as well as the higher temperature regime, affected gluten accumulation during the grain-filling process, as emerged analyzing gluten composition in grain samples of the same variety harvested in the area both before and after the breakpoint in temperature. In particular, the proportion of gluten polymers (i.e., gliadins, high and low molecular weight glutenins, and their ratio) showed a strong and significant correlation with cumulative growing degree days (CGDDs) accumulated during the grain filling. Higher CGDD values during the period, typical of CC in Southern Europe, accounting for higher temperature and faster grain filling, correlated with gliadins, high molecular weight glutenins, and their proportion with low molecular weight glutenins. In summary, herein reported, data might contribute to assessing the effects of CC on wheat phenology and quality, representing a tool for both predictive purposes and decision supporting systems for farmers, as well as can guide future breeding choices for varietal innovation.
Collapse
Affiliation(s)
- Giovanni Maria Poggi
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum—University of Bologna, Bologna, Italy
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Simona Corneti
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Erika Esposito
- Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Institute of Neurological Sciences of Bologna (ISNB), Bologna, Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Jessica Fiori
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Stefano Piana
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Francesca Ventura
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
De Santis MA, Soccio M, Laus MN, Flagella Z. Influence of Drought and Salt Stress on Durum Wheat Grain Quality and Composition: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2599. [PMID: 34961071 PMCID: PMC8708103 DOI: 10.3390/plants10122599] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 05/09/2023]
Abstract
Durum wheat is a staple crop for the Mediterranean diet because of its adaptability to environmental pressure and for its large use in cereal-based food products, such as pasta and bread, as a source of calories and proteins. Durum wheat whole grains are also highly valued for their peculiar amount of dietary fiber and minerals, as well as bioactive compounds of particular interest for their putative health-beneficial properties, including polyphenols, carotenoids, tocopherols, tocotrienols, and phytosterols. In Mediterranean environments, durum wheat is mostly grown under rainfed conditions, where the crop often experiences environmental stresses, especially water deficit and soil salinity that may induce a hyperosmotic stress. In particular, changes in C and N accumulation due to these abiotic conditions, during grain filling, can influence starch and storage protein amount and composition in durum wheat caryopsis, thus influencing yield and quality traits. Recent advancements regarding the influence of water deficit and salinity stress on durum wheat are critically discussed. In particular, a focus on stress-induced changes in (a) grain protein content and composition in relation to technological and health quality; (b) starch and dietary fiber accumulation and composition; (c) phytochemical composition; (d) health-related grain micronutrient accumulation, such as Fe and Zn.
Collapse
Affiliation(s)
- Michele Andrea De Santis
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.S.); (M.N.L.)
| | | | | | - Zina Flagella
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.S.); (M.N.L.)
| |
Collapse
|
6
|
Paris R, Petruzzino G, Savino M, De Simone V, Ficco DBM, Trono D. Genome-Wide Identification, Characterization and Expression Pattern Analysis of the γ-Gliadin Gene Family in the Durum Wheat ( Triticum durum Desf.) Cultivar Svevo. Genes (Basel) 2021; 12:genes12111743. [PMID: 34828349 PMCID: PMC8621147 DOI: 10.3390/genes12111743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Very recently, the genome of the modern durum wheat cv. Svevo was fully sequenced, and its assembly is publicly available. So, we exploited the opportunity to carry out an in-depth study for the systematic characterization of the γ-gliadin gene family in the cv. Svevo by combining a bioinformatic approach with transcript and protein analysis. We found that the γ-gliadin family consists of nine genes that include seven functional genes and two pseudogenes. Three genes, Gli-γ1a, Gli-γ3a and Gli-γ4a, and the pseudogene Gli-γ2a* mapped on the A genome, whereas the remaining four genes, Gli-γ1b, Gli-γ2b, Gli-γ3b and Gli-γ5b, and the pseudogene Gli-γ4b* mapped on the B genome. The functional γ-gliadins presented all six domains and eight-cysteine residues typical of γ-gliadins. The Gli-γ1b also presented an additional cysteine that could possibly have a role in the formation of the gluten network through binding to HMW glutenins. The γ-gliadins from the A and B genome differed in their celiac disease (CD) epitope content and composition, with the γ-gliadins from the B genome showing the highest frequency of CD epitopes. In all the cases, almost all the CD epitopes clustered in the central region of the γ-gliadin proteins. Transcript analysis during seed development revealed that all the functional γ-gliadin genes were expressed with a similar pattern, although significant differences in the transcript levels were observed among individual genes that were sometimes more than 60-fold. A progressive accumulation of the γ-gliadin fraction was observed in the ripening seeds that reached 34% of the total gliadin fraction at harvest maturity. We believe that the insights generated in the present study could aid further studies on gliadin protein functions and future breeding programs aimed at the selection of new healthier durum wheat genotypes.
Collapse
Affiliation(s)
- Roberta Paris
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, Via di Corticella 133, 40128 Bologna, Italy;
| | - Giuseppe Petruzzino
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
| | - Michele Savino
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
| | - Vanessa De Simone
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
| | - Donatella B. M. Ficco
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
| | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
- Correspondence:
| |
Collapse
|
7
|
Gluten aggregation properties as a tool for durum wheat quality assessment: A chemometric approach. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Di Francesco A, Cunsolo V, Saletti R, Svensson B, Muccilli V, De Vita P, Foti S. Quantitative Label-Free Comparison of the Metabolic Protein Fraction in Old and Modern Italian Wheat Genotypes by a Shotgun Approach. Molecules 2021; 26:molecules26092596. [PMID: 33946829 PMCID: PMC8124627 DOI: 10.3390/molecules26092596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022] Open
Abstract
Wheat represents one of the most important cereals for mankind. However, since wheat proteins are also the causative agent of several adverse reactions, during the last decades, consumers have shown an increasing interest in the old wheat genotypes, which are generally perceived as more "natural" and healthier than the modern ones. Comparison of nutritional value for modern and old wheat genotypes is still controversial, and to evaluate the real impact of these foods on human health comparative experiments involving old and modern genotypes are desirable. The nutritional quality of grain is correlated with its proteomic composition that depends on the interplay between the genetic characteristics of the plant and external factors related to the environment. We report here the label-free shotgun quantitative comparison of the metabolic protein fractions of two old Sicilian landraces (Russello and Timilia) and the modern variety Simeto, from the 2010-2011 and 2011-2012 growing seasons. The overall results show that Timilia presents the major differences with respect to the other two genotypes investigated. These differences may be related to different defense mechanisms and some other peculiar properties of these genotypes. On the other hand, our results confirm previous results leading to the conclusion that with respect to a nutritional value evaluation, there is a substantial equivalence between old and modern wheat genotypes. Data are available via ProteomeXchange with identifier <PXD024204>.
Collapse
Affiliation(s)
- Antonella Di Francesco
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.D.F.); (R.S.); (V.M.); (S.F.)
| | - Vincenzo Cunsolo
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.D.F.); (R.S.); (V.M.); (S.F.)
- Correspondence:
| | - Rosaria Saletti
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.D.F.); (R.S.); (V.M.); (S.F.)
| | - Birte Svensson
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Søltofts Plads, Building 224, 2800 Kgs. Lyngby, Denmark;
| | - Vera Muccilli
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.D.F.); (R.S.); (V.M.); (S.F.)
| | - Pasquale De Vita
- CREA Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673 km 25.200, 71122 Foggia, Italy;
| | - Salvatore Foti
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.D.F.); (R.S.); (V.M.); (S.F.)
| |
Collapse
|
9
|
M Victorio VC, O Alves T, M F Souza GH, Gutkoski LC, Cameron LC, S L Ferreira M. NanoUPLC-MS E reveals differential abundance of gluten proteins in wheat flours of different technological qualities. J Proteomics 2021; 239:104181. [PMID: 33677101 DOI: 10.1016/j.jprot.2021.104181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/18/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Gluten proteins contribute to the rheological properties of dough. Mass spectrometric techniques help to understand the contribution of these proteins to the quality of the end product. This work aimed to apply modern proteomic techniques to characterize and provide a better understanding of gluten proteins in wheat flours of different technological qualities. Nine Brazilian wheat flours (Triticum aestivum) classified by rheological gluten force were used to extract the proteins. Extracts were pooled together by technological qualities in low (LW), medium (MD), and superior (SP). Peptides were analyzed by nanoUPLC and mass spectrometry multiplex method (MSE). Collectively, 3545 peptides and 1297 proteins were identified, and 116 proteins were found differentially abundant. Low molecular weight glutenin subunits (LMW-GS) were found up-regulated only in SP samples. Proteins related to wheat grain hardness, such as puroindoline-A, were found in significant concentration in LW samples. After domain prediction, LW presented a different pattern with a lower abundance of functional domains, and SP presented chaperones, known to be involved in adequate folding of the storage proteins. NanoUPLC-MSE was efficient in analyzing and distinguishing the proteomic pattern of wheat flours from different qualities, pointing out the differentially abundant gluten proteins and providing a better understanding of wheat flour quality. SIGNIFICANCE: Common wheat is one of the most important staple food sources in the world. The improvement and comprehension of wheat quality has been a major objective of plant breeders and cereal chemists. Our findings highlighted the application of a modern proteomic approach to obtain a better understanding of the impact of gluten proteins on the technological quality of different wheat flours. The obtained data revealed different abundances of wheat quality-related proteins in superior quality flours when compared with samples of low rheological properties. In addition, multivariate statistical analysis clearly distinguished the flours of different qualities. This work contributes to the consolidation of research in the field of wheat technological quality.
Collapse
Affiliation(s)
- V C M Victorio
- Laboratory of Bioactives, Food and Nutrition Graduate Program, PPGAN, Federal University of the State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, 22290-240, RJ, Brazil.
| | - T O Alves
- Laboratory of Bioactives, Food and Nutrition Graduate Program, PPGAN, Federal University of the State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, 22290-240, RJ, Brazil.
| | | | - L C Gutkoski
- Laboratory of Bioactives, Food and Nutrition Graduate Program, PPGAN, Federal University of the State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, 22290-240, RJ, Brazil
| | - L C Cameron
- Center of Innovation in Mass Spectrometry-Laboratory of Protein Biochemistry (IMasS-LBP), UNIRIO, Brazil.
| | - M S L Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, PPGAN, Federal University of the State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, 22290-240, RJ, Brazil; Center of Innovation in Mass Spectrometry-Laboratory of Protein Biochemistry (IMasS-LBP), UNIRIO, Brazil.
| |
Collapse
|