1
|
Singh B, Muthusamy V, Shrivastava S, Chand G, Gain N, Bhatt V, Zunjare RU, Hossain F. Analysis of nutritional composition in opaque2- and crtRB1-based single- and double-biofortified super sweet corn. J Appl Genet 2025; 66:1-14. [PMID: 38733523 DOI: 10.1007/s13353-024-00873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Sweet corn has emerged as a favorite food item worldwide owing to its kernel sweetness. However, traditional sweet corn cultivars are poor in provitamin-A (proA) and essential amino acids, viz., lysine and tryptophan. So far, no sweet corn hybrid with high nutritional qualities has been commercialized elsewhere. Here, we analyzed accumulation of provitamin-A (proA), lysine, and tryptophan in a set of mutant versions of (i) crtRB1-, (ii) o2-, and (iii) crtRB1 + o2-based sweet corn inbreds and hybrids with (iv) traditional sweet corn (wild-type: O2 + CrtRB1). The crtRB1- and crtRB1 + o2-based genotypes possessed significantly higher proA (17.31 ppm) over traditional sweet corn (2.83 ppm), while o2- and crtRB1 + o2-based genotypes possessed significantly higher lysine (0.345%) and tryptophan (0.080%) over traditional sweet corn (lysine 0.169%, tryptophan 0.036%). Late sowing favored high kernel lysine, proA, and green cob yield among hybrids. Sweetness (17.87%) among the improved inbreds and hybrids was comparable to the original sweetcorn genotypes (17.84%). Among the four genotypic classes, crtRB1 + o2-based improved genotypes showed stronger association among traits over genotypes with o2 and crtRB1 genes alone. Significant association was observed among (i) proA and BC (r = 0.99), (ii) proA and BCX (r = 0.93), (iii) lysine and tryptophan (r = 0.99), and (iv) green cob yield with fodder yield (r = 0.73) in sweet corn hybrids. The study demonstrated that combining crtRB1 and o2 genes did not pose any negative impact on nutritional, yield, and agronomic performance. Sweet corn with crtRB1 + o2 assumes significance for alleviating malnutrition through sustainable and cost-effective approach.
Collapse
Affiliation(s)
- Bhavna Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Vignesh Muthusamy
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Gulab Chand
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Nisrita Gain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vinay Bhatt
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajkumar U Zunjare
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Firoz Hossain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
2
|
Mishra SJ, Hossain F, Zunjare RU, Chhabra R, Katral A, Gopinath I, Bhatt V, Sarma GR, Talukder ZA, Kasana RK, Devi EL, Sarika K, Mehta BK, Guleria SK, Kumar J, Muthusamy V. Genomics-assisted stacking of waxy1, opaque2, and crtRB1 genes for enhancing amylopectin in biofortified maize for industrial utilization and nutritional security. Funct Integr Genomics 2025; 25:18. [PMID: 39832037 DOI: 10.1007/s10142-024-01523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/30/2025]
Abstract
Waxy maize is highly preferred diet in developing countries due to its high amylopectin content. Enriching amylopectin in biofortified maize meets food security and fulfils the demand of rising industrial applications, especially bioethanol. The mutant waxy1 (wx1) gene is responsible for increased amylopectin in maize starch, with a wide range of food and industrial applications. Conventional maize has a modest amount of amylopectin (70-75% of starch), but waxy maize, with favourable wx1 allele, has ~ 95-100% amylopectin. In this study, the wx1 allele was introgressed into the multi-nutrient-rich maize parental inbreds (PMI-PV9 and PMI-PV5) of APQH8, a multi-nutrient rich maize hybrid having high lysine, tryptophan, and provitamin-A nutritionally superior over the traditional hybrids. Gene-specific markers specific for o2 and crtRB1 were employed to select desirable gene segregants from BC1F1, BC2F1, and BC2F2. Background selection was employed with > 90 SSR markers. Selected backcross progenies showed high recovery of recurrent parent genomes (RPG: 94.8-96.8%). The reconstituted waxy hybrids exhibited an increase in amylopectin (mean: 98.4%) compared to the original hybrid (mean: 72.7%). The reconstituted hybrids also recorded enhanced lysine (mean: 0.382%), tryptophan (mean: 0.092%), and provitamin-A (mean: 10.36 ppm), respectively, than normal maize, however similar to the original hybrid with high lysine: 0.330%, tryptophan: 0.079% and provitamin-A: 10.42 ppm. Furthermore, MAS-derived genotypes showed similar agro-morphological traits and grain yield. These biofortified waxy maize hybrids, rich in provitamin-A, lysine, and tryptophan with enhanced amylopectin hold great potential in diverse industrial applications and nutritional security.
Collapse
Affiliation(s)
- Subhra J Mishra
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- AMITY Institute of Biotechnology, AMITY University, Noida, Uttar Pradesh, 201313, India
| | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Ikkurti Gopinath
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vinay Bhatt
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Govinda Rai Sarma
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Ravindra K Kasana
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Elangbam L Devi
- ICAR-Research Complex for North Eastern Hill Region Centre, Sikkim, 737102, India
| | - Konsam Sarika
- ICAR-Research Complex for North Eastern Hill Region Centre, Manipur, 795004, India
| | - Brijesh K Mehta
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284001, India
| | - Satish K Guleria
- CSK-Himachal Pradesh Krishi Vishvavidyalaya, Bajaura, Himachal Pradesh, 175125, India
| | - Jitender Kumar
- AMITY Institute of Biotechnology, AMITY University, Noida, Uttar Pradesh, 201313, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
3
|
Gowda MM, Muthusamy V, Chhabra R, Duo H, Pal S, Gain N, Katral A, Kasana RK, Zunjare RU, Hossain F. Development and Validation of Multiplex-PCR Assay for β-Carotene hydroxylase and γ-Tocopherol methyl transferase Genes Governing Enhanced Multivitamins in Maize for Its Application in Genomics-Assisted Breeding. PLANTS (BASEL, SWITZERLAND) 2025; 14:142. [PMID: 39795402 PMCID: PMC11722798 DOI: 10.3390/plants14010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/25/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Traditional maize possesses low concentrations of provitamin-A and vitamin-E, leading to various health concerns. Mutant alleles of crtRB1 and vte4 that enhance β-carotene (provitamin-A) and α-tocopherol (vitamin-E), respectively, in maize kernels have been explored in several biofortification programs. For genetic improvement of these target nutrients, uniplex-PCR assays are routinely used in marker-assisted selection. However, due to back-to-back breeding seasons, the time required for genotyping individually for each target gene in large backcross populations becomes a constraint for advancing the generations. Additionally, multiple PCR assays for various genes increase the required costs and resources. Here, we aimed to develop a multiplex-PCR assay to simultaneously identify different allelic forms of crtRB1 and vte4 genes and validate them in a backcross-based segregating population. The PCR assay was carried out using newly developed primers for crtRB1 and a gene-specific primer for vte4. The uniplex-PCR assay was standardized for selected primer pairs in the BC1F1 population segregating for crtRB1 and vte4 genes. Subsequently, a multiplex-PCR assay for crtRB1 and vte4 genes was developed and employed for genotyping in the BC1F1 population. The assay differentiated among four possible genotypic classes, namely crtRB1+crtRB1/vte4+vte4, crtRB1crtRB1/vte4+vte4, crtRB1+crtRB1/vte4+vte4+, and crtRB1crtRB1/vte4+vte4+. This newly developed multiplex-PCR assay saved 41.7% of the cost and 35.6% of the time compared to two individual uniplex-PCR assays. The developed assay could accelerate maize nutritional quality breeding programs through rapid and cost-effective genotyping for the target genes. This is the first report of a multiplex-PCR assay specific to crtRB1 and vte4 genes for its use in genomics-assisted breeding in maize.
Collapse
Affiliation(s)
| | - Vignesh Muthusamy
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (M.M.G.); (R.C.); (H.D.); (S.P.); (N.G.); (A.K.); (R.K.K.); (R.U.Z.); (F.H.)
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Mehta BK, Chauhan HS, Basu S, Anand A, Baveja A, Zunjare RU, Muthusamy V, Singh AK, Hossain F. Mutant crtRB1 gene negates the unfavourable effects of opaque2 gene on germination and seed vigour among shrunken2-based biofortified sweet corn genotypes. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23179. [PMID: 38326234 DOI: 10.1071/fp23179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Sweet corn is one of the most popular vegetables worldwide. However, traditional shrunken2 (sh2 )-based sweet corn varieties are poor in nutritional quality. Here, we analysed the effect of (1) β-carotene hydroxylase1 (crtRB1 ), (2) opaque2 (o2 ) and (3) o2+crtRB1 genes on nutritional quality, germination, seed vigour and physico-biochemical traits in a set of 27 biofortified sh2 -based sweet corn inbreds. The biofortified sweet corn inbreds recorded significantly higher concentrations of proA (16.47μg g-1 ), lysine (0.36%) and tryptophan (0.09%) over original inbreds (proA: 3.14μg g-1 , lysine: 0.18%, tryptophan: 0.04%). The crtRB1 -based inbreds had the lowest electrical conductivity (EC), whereas o2 -based inbreds possessed the highest EC. The o2 +crtRB1 -based inbreds showed similar EC to the original inbreds. Interestingly, o2 -based inbreds also had the lowest germination and seed vigour compared to original inbreds, whereas crtRB1 and o2 +crtRB1 introgressed sweet corn inbreds showed similar germination and seed vigour traits to their original versions. This suggested that the negative effect of o2 on germination, seed vigour and EC is nullified by crtRB1 in the double mutant sweet corn. Overall, o2 +crtRB1 -based sweet corn inbreds were found the most desirable over crtRB1 - and o2 -based inbreds alone.
Collapse
Affiliation(s)
- Brijesh K Mehta
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; and Present address: ICAR-Indian Grassland and Fodder Research Institute, Jhansi 284003, India
| | - Hema S Chauhan
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sudipta Basu
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anjali Anand
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Aanchal Baveja
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Ashok K Singh
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
5
|
Satarova TM, Denysiuk KV, Cherchel VY, Dziubetskyi BV. Distribution of Alleles of β-Carotene Hydroxylase 1 Gene in Modern Genotypes of Zea mays L. CYTOL GENET+ 2023. [DOI: 10.3103/s0095452723010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
6
|
Saha I, Rathinavel K, Manoharan B, Adhimoolam K, Sampathrajan V, Rajasekaran R, Muthurajan R, Natesan S. The resurrection of sweet corn inbred SC11-2 using marker aided breeding for β-carotene. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1004450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sweet corn has dominated the urban market due to its sweetness, tenderness, and ease of digestibility. It's import and export values have dramatically increased during the past 10 years as a fresh, processed, and preserved commodity. However, the commercially available sweet corns are deficient in β-carotene. In our study, we introgressed the favorable allele of crtRB1 (responsible for high β-carotene) into the recurrent sweet corn inbred SC11-2 from maize donor parent UMI1230β1+ to develop the β-carotene-rich sweet corn genotype by marker aided breeding. The crtRB1 3′TE InDel marker was utilized for foreground selection of favorable genotype. A total of 103 polymorphic SSR markers were employed for background selection, resulting in a 96% recovery of recurrent parent genome (RPG). We recorded high β-carotene content (9.878–10.645 μg/g) in the introgressed lines compared to the recurrent parent, SC11-2 (0.989 μg/g). The sugar content ranged from 18 to 19.10% and was on par with the recurrent parent (20.40%). These biofortified inbreds can be used as a donor in maize breeding programs to develop sweet corn genotypes with high β-carotene content.
Collapse
|
7
|
Safiul Azam FM, Lian T, Liang Q, Wang W, Zhang C, Jiang L. Variation of vitamin B contents in maize inbred lines: Potential genetic resources for biofortification. Front Nutr 2022; 9:1029119. [PMID: 36337650 PMCID: PMC9634661 DOI: 10.3389/fnut.2022.1029119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin B and its derivatives possess diverse physiological functions and are essential micronutrients for humans. Their variation in crops is important for the identification of genetic resources used to develop new varieties with enhanced vitamin B. In this research, remarkable variations were observed in kernels of 156 maize inbred lines, ranging from 107.61 to 2654.54 μg per 100 g for vitamin B1, 1.19-37.37 μg per 100 g for B2, 19.60-213.75 μg per 100 g for B3, 43.47-590.86 μg per 100 g for B5, and 138.59-1065.11 μg per 100 g for B6. Growing inbreeds in Hainan and Hebei provinces of China revealed environmental and genotype interactions among these vitamins and the correlations between them in maize grain. Several inbred lines were identified as good sources of vitamin B and promising germplasms for maize breeding, namely By855 and Si273 are overall rich in all the studied vitamins, and GY386B and CML118 are specially enriched with derivatives of vitamin B6. The present study can assist maize breeders with germplasm resources of vitamin B for biofortification to offer people nutritious foods.
Collapse
Affiliation(s)
| | - Tong Lian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Chhabra R, Muthusamy V, Baveja A, Katral A, Mehta B, Zunjare RU, Hossain F. Allelic variation in shrunken2 gene affecting kernel sweetness in exotic-and indigenous-maize inbreds. PLoS One 2022; 17:e0274732. [PMID: 36136965 PMCID: PMC9498942 DOI: 10.1371/journal.pone.0274732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022] Open
Abstract
Sweet corn has become a popular food worldwide. It possesses six-times more sugar than field corn due to the presence of recessive shrunken2 (sh2) gene. Despite availability of diverse sweet corn germplasm, comprehensive characterization of sh2 has not been undertaken so far. Here, entire Sh2 gene (7320 bp) among five field corn-(Sh2Sh2) and six sweet corn-(sh2sh2) inbreds was sequenced. A total of 686 SNPs and 372 InDels were identified, of which three SNPs differentiated the wild-(Sh2) and mutant-(sh2) allele. Ten InDel markers were developed to assess sh2 gene-based diversity among 23 sweet corn and 25 field corn lines. Twenty-five alleles and 47 haplotypes of sh2 were identified among 48 inbreds. Among markers, MGU-InDel-2, MGU-InDel-3, MGU-InDel-5 and MGU-InDel-8 had PIC>0.5. Major allele frequency varied from 0.458–0.958. The gene sequence of these maize inbreds was compared with 25 orthologues of monocots. Sh2 gene possessed 15–18 exons with 6-225bp among maize, while it was 6–21 exons with 30-441bp among orthologues. While intron length across maize genotypes varied between 67-2069bp, the same among orthologues was 57–2713 bp. Sh2-encoded AGPase domain was more conserved than NTP transferase domain. Nucleotide and protein sequences of sh2 in maize and orthologues revealed that rice orthologue was closer to maize than other monocots. The study also provided details of motifs and domains present in sh2 gene, physicochemical properties and secondary structure of SH2 protein in maize inbreds and orthologues. This study reports detailed characterization and diversity analysis in sh2 gene of maize and related orthologues in various monocots.
Collapse
Affiliation(s)
- Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Aanchal Baveja
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Brijesh Mehta
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- * E-mail:
| |
Collapse
|
9
|
Calugar RE, Muntean E, Varga A, Vana CD, Has VV, Tritean N, Ceclan LA. Improving the Carotenoid Content in Maize by Using Isonuclear Lines. PLANTS (BASEL, SWITZERLAND) 2022; 11:1632. [PMID: 35807583 PMCID: PMC9269311 DOI: 10.3390/plants11131632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Carotenoids are important biologically active compounds in the human diet due to their role in maintaining a proper health status. Maize (Zea mays L.) is one of the main crops worldwide, in terms of production quantity, yield and harvested area, as it is also an important source of carotenoids in human nutrition worldwide. Increasing the carotenoid content of maize grains is one of the major targets of the research into maize breeding; in this context, the aim of this study was to establish the influence of some fertile cytoplasm on the carotenoid content in inbred lines and hybrids. Twenty-five isonuclear lines and 100 hybrids were studied for the genetic determinism involved in the transmission of four target carotenoids: lutein, zeaxanthin, β-cryptoxanthin and β-carotene. The analysis of carotenoids was carried out using high performance liquid chromatography using a Flexar system with UV-VIS detection. The obtained data revealed that the cytoplasms did not have a significant influence on the carotenoid content of the inbred lines; larger differences were attributed to the cytoplasm × nucleus interaction. For hybrids, the cytoplasmic nuclear interactions have a significant influence on the content of lutein, zeaxanthin and β-cryptoxanthin. For the cytoplasm × nucleus × tester interactions, significant differences were identified for all traits.
Collapse
Affiliation(s)
- Roxana Elena Calugar
- Agricultural Research and Development Station Turda, Agriculturii 27, 401100 Turda, Romania; (R.E.C.); (A.V.); (C.D.V.); (V.V.H.); (L.A.C.)
| | - Edward Muntean
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| | - Andrei Varga
- Agricultural Research and Development Station Turda, Agriculturii 27, 401100 Turda, Romania; (R.E.C.); (A.V.); (C.D.V.); (V.V.H.); (L.A.C.)
| | - Carmen Daniela Vana
- Agricultural Research and Development Station Turda, Agriculturii 27, 401100 Turda, Romania; (R.E.C.); (A.V.); (C.D.V.); (V.V.H.); (L.A.C.)
| | - Voichita Virginia Has
- Agricultural Research and Development Station Turda, Agriculturii 27, 401100 Turda, Romania; (R.E.C.); (A.V.); (C.D.V.); (V.V.H.); (L.A.C.)
| | - Nicolae Tritean
- Agricultural Research and Development Station Turda, Agriculturii 27, 401100 Turda, Romania; (R.E.C.); (A.V.); (C.D.V.); (V.V.H.); (L.A.C.)
| | - Loredana Anca Ceclan
- Agricultural Research and Development Station Turda, Agriculturii 27, 401100 Turda, Romania; (R.E.C.); (A.V.); (C.D.V.); (V.V.H.); (L.A.C.)
| |
Collapse
|
10
|
Baveja A, Chhabra R, Panda KK, Muthusamy V, Mehta BK, Mishra SJ, Zunjare RU, Hossain F. Expression analysis of opaque2, crtRB1 and shrunken2 genes during different stages of kernel development in biofortified sweet corn. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Composition of lysine and tryptophan among biofortified-maize possessing novel combination of opaque2 and opaque16 genes. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Talukder ZA, Muthusamy V, Chhabra R, Bhatt V, Reddappa SB, Mishra SJ, Prakash NR, Kasana RK, Chauhan HS, Mehta BK, Guleria SK, Zunjare RU, Hossain F. Enrichment of amylopectin in sub-tropically adapted maize hybrids through genomics-assisted introgression of waxy1 gene encoding granule-bound starch synthase (GBSS). J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Combining higher accumulation of amylopectin, lysine and tryptophan in maize hybrids through genomics-assisted stacking of waxy1 and opaque2 genes. Sci Rep 2022; 12:706. [PMID: 35027624 PMCID: PMC8758761 DOI: 10.1038/s41598-021-04698-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/22/2021] [Indexed: 11/15/2022] Open
Abstract
Waxy maize rich in amylopectin has emerged as a preferred food. However, waxy maize is poor in lysine and tryptophan, deficiency of which cause severe health problems. So far, no waxy hybrid with high lysine and tryptophan has been developed and commercialized. Here, we combined recessive waxy1 (wx1) and opaque2 (o2) genes in the parental lines of four popular hybrids (HQPM1, HQPM4, HQPM5, and HQPM7) using genomics-assisted breeding. The gene-based markers, wx-2507F/RG and phi057 specific for wx1 and o2, respectively were successfully used to genotype BC1F1, BC2F1 and BC2F2 populations. Background selection with > 100 SSRs resulted in recovering > 94% of the recurrent parent genome. The reconstituted hybrids showed 1.4-fold increase in amylopectin (mean: 98.84%) compared to the original hybrids (mean: 72.45%). The reconstituted hybrids also showed 14.3% and 14.6% increase in lysine (mean: 0.384%) and tryptophan (mean: 0.102%), respectively over the original hybrids (lysine: 0.336%, tryptophan: 0.089%). Reconstituted hybrids also possessed similar grain yield (mean: 6248 kg/ha) with their original versions (mean: 6111 kg/ha). The waxy hybrids with high lysine and tryptophan assume great significance in alleviating malnutrition through sustainable and cost-effective means. This is the first report of development of lysine and tryptophan rich waxy hybrids using genomics-assisted selection.
Collapse
|
14
|
Mehta BK, Chhabra R, Muthusamy V, Zunjare RU, Baveja A, Chauhan HS, Prakash NR, Chalam VC, Singh AK, Hossain F. Expression analysis of β-carotene hydroxylase1 and opaque2 genes governing accumulation of provitamin-A, lysine and tryptophan during kernel development in biofortified sweet corn. 3 Biotech 2021; 11:325. [PMID: 34194909 DOI: 10.1007/s13205-021-02837-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/07/2021] [Indexed: 12/01/2022] Open
Abstract
Traditional sweet corn possesses low levels of provitamin-A (proA), lysine and tryptophan. Mutant version of β-carotene hydroxylase1 (crtRB1) gene affecting the accumulation of β-carotene (BC), β-cryptoxanthin (BCX) and proA, and opaque2 (o2) gene governing the enhancement of lysine and tryptophan were introgressed together into elite sweet corn inbreds through marker-assisted selection. Here, we analyzed the expression pattern of crtRB1 and o2 genes among introgressed and traditional sweet corn inbreds at 20-, 24- and 28-days after pollination (DAP). The introgressed inbreds possessed two- to sevenfolds higher BC, BCX, proA, lysine and tryptophan compared to their original inbreds. However, all the nutrients attained the peak at 20-DAP (BC: 9.95 µg/g, BCX: 8.21 µg/g, proA: 14.05 µg/g, lysine: 0.301%, tryptophan: 0.074%), which gradually reduced through 24-DAP (BC: 8.24 µg/g, BCX: 7.53 µg/g, proA: 12.01 µg/g, lysine: 0.273%, tryptophan: 0.057%) and 28-DAP (BC: 5.84 µg/g, BCX: 5.82 µg/g, proA: 8.75 µg/g, lysine: 0.202%, tryptophan: 0.037%). Biofortified sweet corn inbreds possessed significantly lower expression levels of crtRB1 (4.1-fold) and o2 (2.2-fold) compared to their wild type alleles in traditional sweet corn inbreds across DAPs. The expression of crtRB1 and o2 increased from 20-DAP to attain the highest peak at 24-DAP, and further decreased by 28-DAP. The transcript levels of crtRB1 were negatively correlated with BC (r = - 0.83), BCX (r = - 0.79) and proA (r = - 0.83) across dates of harvest. Lysine (r = - 0.83) and tryptophan (r = - 0.73) were also inversely associated with o2 transcript levels. This is the first report on expression of crtRB1 and o2 genes during kernel development in biofortified sweet corn. This information holds immense promise in understanding the dynamics of gene-regulation during kernel development in sweet corn.
Collapse
Affiliation(s)
- Brijesh Kumar Mehta
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
- Present Address: ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284003 India
| | - Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | | | - Aanchal Baveja
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | | | | | | | - Ashok Kumar Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
15
|
Chhabra R, Muthusamy V, Gain N, Katral A, Prakash NR, Zunjare RU, Hossain F. Allelic variation in sugary1 gene affecting kernel sweetness among diverse-mutant and -wild-type maize inbreds. Mol Genet Genomics 2021; 296:1085-1102. [PMID: 34159441 DOI: 10.1007/s00438-021-01807-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/16/2021] [Indexed: 12/01/2022]
Abstract
Sweet corn is popular worldwide as vegetable. Though large numbers of sugary1 (su1)-based sweet corn germplasm are available, allelic diversity in su1 gene encoding SU1 isoamylase among diverse maize inbreds has not been analyzed. Here, we characterized the su1 gene in maize and compared with allied species. The entire su1 gene (11,720 bp) was sequenced among six mutant (su1) and five wild (Su1) maize inbreds. Fifteen InDels of 2-45 bp were selected to develop markers for studying allelic diversity in su1 gene among 19 mutant- (su1) and 29 wild-type (Su1) inbreds. PIC ranged from 0.15 (SU-InDel7) to 0.37 (SU-InDel13). Major allele frequency varied from 0.52 to 0.90, while gene diversity ranged from 0.16 to 0.49. Phylogenetic tree categorized 48 maize inbreds in two clusters each for wild- type (Su1) and mutant (su1) types. 44 haplotypes of su1 were observed, with three haplotypes (Hap6, Hap22 and Hap29) sharing more than one genotype. Further, comparisons were made with 23 orthologues of su1 from 16 grasses and Arabidopsis. Maize possessed 15-19 exons in su1, while it was 11-24 exons among orthologues. Introns among the orthologues were longer (77-2206 bp) than maize (859-1718 bp). SU1 protein of maize and orthologues had conserved α-amylase and CBM_48 domains. The study also provided physicochemical properties and secondary structure of SU1 protein in maize and its orthologues. Phylogenetic analysis showed closer relationship of maize SU1 protein with P. hallii, S. bicolor and E. tef than Triticum sp. and Oryza sp. The study showed that presence of high allelic diversity in su1 gene which can be utilized in the sweet corn breeding program. This is the first report of comprehensive characterization of su1 gene and its allelic forms in diverse maize and related orthologues.
Collapse
Affiliation(s)
- Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nisrita Gain
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Nitish R Prakash
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
16
|
Qutub M, Chandran S, Rathinavel K, Sampathrajan V, Rajasekaran R, Manickam S, Adhimoolam K, Muniyandi SJ, Natesan S. Improvement of a Yairipok Chujak Maize Landrace from North Eastern Himalayan Region for β-Carotene Content through Molecular Marker-Assisted Backcross Breeding. Genes (Basel) 2021; 12:genes12050762. [PMID: 34069791 PMCID: PMC8157291 DOI: 10.3390/genes12050762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
In the North Eastern Himalayan region (NEHR) of India, maize is an important food crop. The local people cultivate the maize landraces and consume them as food. However, these landraces are deficient in β-carotene content. Thus, we aimed to incorporate the crtRB1 gene from UMI285β+ into the genetic background of the NEHR maize landrace, Yairipok Chujak (CAUM66), and thereby enhance the β-carotene content through marker-assisted backcrossing (MABC). In this regard, we backcrossed and screened BC1F1 and BC2F1 plants possessing the heterozygous allele for crtRB1 and then screened with 106 polymorphic simple sequence repeat (SSR) markers. The plants having maximum recurrent parent genome recovery (RPGR) were selected in each generation and selfed to produce BC2F2 seeds. In the BC2F2 generation, four plants (CAUM66-54-9-12-2, CAUM66-54-9-12-11, CAUM66-54-9-12-13, and CAUM66-54-9-12-24) having homozygous crtRB1-favorable allele with maximum RPGR (86.74–90.16%) were selected and advanced to BC2F3. The four selected plants were selfed to produce BC2F3 and then evaluated for agronomic traits and β-carotene content. The agronomic performance of the four lines was similar (78.83–99.44%) to that of the recurrent parent, and β-carotene content (7.541–8.711 μg/g) was on par with the donor parent. Our study is the first to improve the β-carotene content in NEHR maize landrace through MABC. The newly developed lines could serve as potential resources to further develop nutrition-rich maize lines and could provide genetic stock for use in breeding programs.
Collapse
Affiliation(s)
- Maqbool Qutub
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (M.Q.); (K.R.); (S.M.)
| | - Sarankumar Chandran
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Krishnakumar Rathinavel
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (M.Q.); (K.R.); (S.M.)
| | - Vellaikumar Sampathrajan
- Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, India; (V.S.); (K.A.)
| | - Ravikesavan Rajasekaran
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (M.Q.); (K.R.); (S.M.)
| | - Karthikeyan Adhimoolam
- Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, India; (V.S.); (K.A.)
| | | | - Senthil Natesan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
- Correspondence: ; Tel.: +91-98422-32057
| |
Collapse
|