1
|
Umene K, Yoshida M, Fukumaki Y. Genetic variability in the region encompassing reiteration VII of herpes simplex virus type 1, including deletions and multiplications related to recombination between direct repeats. SPRINGERPLUS 2015; 4:200. [PMID: 26020018 PMCID: PMC4439413 DOI: 10.1186/s40064-015-0990-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/20/2015] [Indexed: 11/13/2022]
Abstract
A number of tandemly reiterated sequences are present on the herpes simplex virus type 1 (HSV-1) DNA molecule of 152 kbp. While regions containing tandem reiterations were usually unstable, reiteration VII, which is present within the protein coding regions of gene US10 and US11, was stable; hence, reiteration VII could be used as a genetic marker. In the present study, the nucleotide sequences (159–213 bp) of a region encompassing reiteration VII of 62 HSV-1 isolates were compared with that of strain 17 as the standard strain, and the genetic variability of base substitutions, deletions, and multiplications was revealed. Base substitution was observed in nine residues on the region flanking reiteration VII and sixty-two HSV-1 isolates were classified into twelve groups based on these base substitutions. Deletions, which were present in all sixty-two isolates, were classified into six groups. Multiplications, which were present in 19 isolates having the same deletion (named del-2), were classified into four groups. The sixty-two isolates were classified into twenty patterns based on variations in the region encompassing reiteration VII, and the region encompassing reiteration VII was considered to be useful for studies on the molecular epidemiology and evolution of HSV-1. The lengths of these deletions and multiplications were multiples of 3; thus, a frame-shift mutation was not induced, and a mechanism to maintain the functions of US10 and US11 was suggested. A series of multiplications, which consisted of the duplication, triplication, and tetraplication of the same sequence, were found. Since all isolates with a multiplication had del-2, multiplications were assumed to be generated after the generation of del-2, and an isolate with del-2 was considered to have the ability to generate a multiplication. Recombination between a pair of direct repeats in and around reiteration VII was accountable for the generation of deletions and multiplications, indicating the recombinogenic property of the region encompassing reiteration VII. A correlation was revealed between a set of 20 DNA polymorphisms widely present on the HSV-1 genome and the base substitutions and deletions of the region encompassing reiteration VII, using discriminant analyses.
Collapse
Affiliation(s)
- Kenichi Umene
- Department of Nutrition & Health Science, Faculty of Human Environmental Science, Fukuoka Woman's University, Fukuoka, 813-8529 Japan
| | - Masami Yoshida
- Department of Dermatology, Sakura Medical Center, School of Medicine, Toho University, Sakura, Chiba 285-8741 Japan
| | - Yasuyuki Fukumaki
- Division of Human Molecular Genetics, Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| |
Collapse
|
2
|
Tang KW, Norberg P, Holmudden M, Elias P, Liljeqvist JÅ. Rad51 and Rad52 are involved in homologous recombination of replicating herpes simplex virus DNA. PLoS One 2014; 9:e111584. [PMID: 25365323 PMCID: PMC4218770 DOI: 10.1371/journal.pone.0111584] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 10/04/2014] [Indexed: 12/27/2022] Open
Abstract
Replication of herpes simplex virus 1 is coupled to recombination, but the molecular mechanisms underlying this process are poorly characterized. The role of Rad51 and Rad52 recombinases in viral recombination was examined in human fibroblast cells 1BR.3.N (wild type) and in GM16097 with replication defects caused by mutations in DNA ligase I. Intermolecular recombination between viruses, tsS and tsK, harboring genetic markers gave rise to ∼17% recombinants in both cell lines. Knock-down of Rad51 and Rad52 by siRNA reduced production of recombinants to 11% and 5%, respectively, in wild type cells and to 3% and 5%, respectively, in GM16097 cells. The results indicate a specific role for Rad51 and Rad52 in recombination of replicating herpes simplex virus 1 DNA. Mixed infections using clinical isolates with restriction enzyme polymorphisms in the US4 and US7 genes revealed recombination frequencies of 0.7%/kbp in wild type cells and 4%/kbp in GM16097 cells. Finally, tandem repeats in the US7 gene remained stable upon serial passage, indicating a high fidelity of recombination in infected cells.
Collapse
Affiliation(s)
- Ka-Wei Tang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Norberg
- Department of Infectious Diseases, Section of Virology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Holmudden
- Department of Infectious Diseases, Section of Virology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Elias
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan-Åke Liljeqvist
- Department of Infectious Diseases, Section of Virology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Molecular method development and establishment of a database for clinical and epidemiological herpes simplex virus 1 strain comparisons. J Clin Microbiol 2014; 52:1566-74. [PMID: 24599983 DOI: 10.1128/jcm.00034-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous methods of herpes simplex virus 1 (HSV-1) genotype analysis have lacked sufficient discriminatory power for strain analysis within genotypes. The hypervariable reiterative repeat regions in the US1 and US12 introns, known as ReIV, were targeted for strain comparison. PCR methods for these extremely GC-rich target regions were optimized to give reproducible amplicons that were visualized by capillary electrophoresis relative to size standards. Analysis of the size, shape, and pattern of the resulting signatures enabled strain discrimination. Primary clinical specimens were used to develop the assay and the analysis algorithm. A blinded clinical study of 147 in-state and 51 out-of-state samples, including matched specimen-isolate pairs, was then performed. All primary clinical samples had been collected between 2004 and 2011 for viral diagnosis and previously found to be positive for HSV-1 by real-time PCR. The combined database contained patterns from 264 samples collected from 199 patients with a total of 176 unique signatures, none of which were dominant in the population. Matches between the signatures of the more than 50 specimen-isolate pairs were always seen. Signatures also matched across multiple samples collected from individual patients (six such cases), as well as some additional signature matches where epidemiological links were likely. Results were reproducible on repeat testing of individual specimens, even after months in frozen storage. The protocol has multiple potential clinical and public health uses.
Collapse
|
4
|
van Velzen M, Ouwendijk WJD, Selke S, Pas SD, van Loenen FB, Osterhaus ADME, Wald A, Verjans GMGM. Longitudinal study on oral shedding of herpes simplex virus 1 and varicella-zoster virus in individuals infected with HIV. J Med Virol 2013; 85:1669-77. [PMID: 23780621 DOI: 10.1002/jmv.23634] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2013] [Indexed: 11/08/2022]
Abstract
Primary herpes simplex virus 1 (HSV-1) and varicella-zoster virus (VZV) infection leads to a life-long latent infection of ganglia innervating the oral mucosa. HSV-1 and VZV reactivation is more common in immunocompromised individuals and may result in viral shedding in saliva. We determined the kinetics and quantity of oral HSV-1 and VZV shedding in HSV-1 and VZV seropositive individuals infected with HIV and to assess whether HSV-1 shedding involves reactivation of the same strain intra-individually. HSV-1 and VZV shedding was determined by real-time PCR of sequential daily oral swabs (n = 715) collected for a median period of 31 days from 22 individuals infected with HIV. HSV-1 was genotyped by sequencing the viral thymidine kinase gene. Herpesvirus shedding was detected in 18 of 22 participants. Shedding of HSV-1 occurred frequently, on 14.3% of days, whereas solely VZV shedding was very rare. Two participants shed VZV. The median HSV-1 load was higher compared to VZV. HSV-1 DNA positive swabs clustered into 34 shedding episodes with a median duration of 2 days. The prevalence, duration and viral load of herpesvirus shedding did not correlate with CD4 counts and HIV load. The genotypes of the HSV-1 viruses shed were identical between and within shedding episodes of the same person, but were different between individuals. One-third of the individuals shed an HSV-1 strain potentially refractory to acyclovir therapy. Compared to HSV-1, oral VZV shedding is rare in individuals infected with HIV. Recurrent oral HSV-1 shedding is likely due to reactivation of the same latent HSV-1 strain.
Collapse
|
5
|
Inoue H, Motani-Saitoh H, Sakurada K, Ikegaya H, Yajima D, Hayakawa M, Sato Y, Otsuka K, Kobayashi K, Nagasawa S, Iwase H. Determination of the geographical origin of unidentified cadavers based on geographical differences in genotype of varicella-zoster virus. J Med Virol 2010; 82:903-8. [DOI: 10.1002/jmv.21666] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Umene K, Kawana T, Fukumaki Y. Serologic and genotypic analysis of a series of herpes simplex virus type 1 isolates from two patients with genital herpes. J Med Virol 2009; 81:1605-12. [PMID: 19626604 DOI: 10.1002/jmv.21581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) has been reported increasingly as a cause of genital herpes, although HSV-1 is usually associated with oro-labial herpes. In the present study, serum specimens and materials for viral isolation were obtained serially from two patients with recrudescent HSV-1 genital infections to study serology and molecular epidemiology. Recurrent episodes, during which HSV-1 was isolated, were followed by an increase in the level of anti-HSV-1 antibody, suggesting a booster effect from re-exposure to viral antigens and the possible usefulness of the variation in the level of anti-HSV-1 antibody to diagnose recurrence. While genotypes of HSV-1 isolates obtained from one patient were different from those from the other patient, genotypes of sequential HSV-1 isolates obtained from the same patient were the same, implying that the recrudescent genital lesions of the two patients could be attributed to endogenous recurrence of a latent virus. Sera from one patient neutralized HSV-1 isolates obtained from the other patient as well as HSV-1 isolates obtained from the same patient. An HSV-1 isolate obtained during a later episode in one patient was neutralized by sera taken before/during the later episode of the same patient, as effectively as an HSV-1 isolate obtained during an earlier episode in the same patient; thus, in these two cases, HSV-1 was assumed to have multiplied during recurrence despite the presence of an anti-HSV-1 antibody that could neutralize experimentally HSV-1.
Collapse
Affiliation(s)
- Kenichi Umene
- Faculty of Human Environmental Science, Department of Nutrition & Health Science, Fukuoka Woman's University, Fukuoka, Japan.
| | | | | |
Collapse
|
7
|
Liljeqvist JÅ, Tunbäck P, Norberg P. Asymptomatically shed recombinant herpes simplex virus type 1 strains detected in saliva. J Gen Virol 2009; 90:559-566. [PMID: 19218200 DOI: 10.1099/vir.0.007070-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen infecting most individuals worldwide. The majority of HSV-1-infected individuals have no clinical symptoms but shed HSV-1 asymptomatically in saliva. Recent phylogenetic analyses of HSV-1 have defined three genetic clades (A-C) and recombinants thereof. These data have all been based on clinical HSV-1 isolates and do not cover genetic variation of asymptomatically shed HSV-1. The primary goal of this study was to investigate such variation. A total of 648 consecutive saliva samples from five HSV-1-infected volunteers was collected. Asymptomatic shedding was detected on 7.6 % of the days from four subjects. The HSV-1 genome loads were quantified with real-time PCR and varied from 1x10(2) to 2.8x10(6) copies of virus DNA (ml saliva)(-1). Phylogenetic network analyses and bootscanning were performed on asymptomatically shed HSV-1. The analyses were based on DNA sequencing of the glycoprotein I gene, and also of the glycoprotein E gene for putative recombinants. For two individuals with clinical HSV-1 infection, the same HSV-1 strain was shed asymptomatically as induced clinical lesions, and sequence analyses revealed that these strains clustered distinctly to clades A and B, respectively. For one of the subjects with no clinical HSV-1 infection, a recombinant strain was identified. The other truly asymptomatic individual shed evolutionarily distinct HSV-1 strains on two occasions. The first strain was classified as a recombinant and the other strain clustered in clade A. High replication rates of different strains in the same person may facilitate the creation of recombinant clinical HSV-1 strains.
Collapse
Affiliation(s)
- Jan Åke Liljeqvist
- Department of Clinical Virology, Göteborg University, Guldhedsgatan 10B, S-413 46 Göteborg, Sweden
| | - Petra Tunbäck
- Department of Dermatovenereology, Göteborg University, Guldhedsgatan 10B, S-413 46 Göteborg, Sweden
| | - Peter Norberg
- Department of Clinical Virology, Göteborg University, Guldhedsgatan 10B, S-413 46 Göteborg, Sweden
| |
Collapse
|
8
|
Bigarré L, Baud M, Cabon J, Antychowicz J, Bergmann SM, Engelsma M, Pozet F, Reichert M, Castric J. Differentiation between Cyprinid herpesvirus type-3 lineages using duplex PCR. J Virol Methods 2009; 158:51-7. [PMID: 19428569 DOI: 10.1016/j.jviromet.2009.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 01/15/2009] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
Abstract
To date, all the isolates of Cyprinid herpesvirus type-3 (CyHV3) responsible for serious outbreaks in carps Cyprinus carpio have been found to be very similar or identical on the basis of DNA sequences of a few reference genes. However, two genetic lineages (U/I and J) are distinguished by full-length genome sequencing. Two molecular markers presenting genetic variations were targeted for developing a duplex PCR assay able to distinguish CyHV3-U/I from CyHV3-J while avoiding DNA sequencing. The method was validated on a series of 42 samples of infected carps from France, The Netherlands and Poland collected from 2001 to 2008. Among these samples, both the U/I and J genotypes were identified, but also a third genotype representing a genetic intermediate between U/I and J for one of the two molecular markers. A classification of CyHV3 genotypes, based on the alleles of the two molecular markers, is proposed. The assay is easy to perform and provides a genotype information with samples moderately or highly concentrated. This tool should improve our knowledge regarding the present distribution and future diversification of this emerging virus.
Collapse
Affiliation(s)
- L Bigarré
- Pathologie Virale des Poissons, AFSSA, Technopôle Brest-Iroise, Plouzané, France.
| | | | | | | | | | | | | | | | | |
Collapse
|