1
|
Ren Y, Wang W, Zhang X, Xu Y, Di Bisceglie AM, Fan X. Evidence for deleterious hepatitis C virus quasispecies mutation loads that differentiate the response patterns in IFN-based antiviral therapy. J Gen Virol 2015; 97:334-343. [PMID: 26581744 DOI: 10.1099/jgv.0.000346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Viral quasispecies (QS) have long been considered to affect the efficiency of hepatitis C virus (HCV) antiviral therapy, but a correlation between QS diversity and treatment outcomes has not been established conclusively. We previously measured HCV QS diversity by genome-wide quantification of high-resolution mutation load in HCV genotype 1a patients achieving a sustained virological response (1a/SVR) or a null response (1a/null). The current study extended this work into HCV 1a patients experiencing relapse (1a/relapse, n = 19) and genotype 2b patients with SVR (2b/SVR, n = 10). The mean mutation load per patient in 2b/SVR and 1a/relapse was similar, respectively, to 1a/SVR (517.6 ± 174.3 vs 524 ± 278.8 mutations, P = 0.95) and 1a/null (829.2 ± 282.8 vs 805.6 ± 270.7 mutations, P = 0.78). Notably, a deleterious mutation load, as indicated by the percentage of non-synonymous mutations, was highest in 2b/SVR (33.2 ± 8.5%) as compared with 1a/SVR (23.6 ± 7.8%, P = 0.002), 1a/null (18.2 ± 5.1%, P = 1.9 × 10(-7)) or 1a/relapse (17.8 ± 5.3%, P = 1.8) × 10(-6). In the 1a/relapse group, continuous virus evolution was observed with excessive accumulation of a deleterious load (17.8 ± 5.3% vs 35.4 ± 12.9%, P = 3.5 × 10(-6)), supporting the functionality of Muller's ratchet in a treatment-induced population bottleneck. Taken together, the magnitude of HCV mutation load, particularly the deleterious mutation load, provides an evolutionary explanation for the emergence of multiple response patterns as well as an overall high SVR rate in HCV genotype 2 patients. Augmentation of Muller's ratchet represents a potential strategy to reduce or even eliminate viral relapse in HCV antiviral therapy.
Collapse
Affiliation(s)
- Yi Ren
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA.,Wuhan Center for Tuberculosis Control, Wuhan 430030, Hubei, PR China
| | - Weihua Wang
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Xiaoan Zhang
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Yanjuan Xu
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Adrian M Di Bisceglie
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA.,Saint Louis University Liver Center, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Xiaofeng Fan
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA.,Saint Louis University Liver Center, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| |
Collapse
|
2
|
Korba B, Shetty K, Medvedev A, Viswanathan P, Varghese R, Zhou B, Roy R, Makambi K, Ressom H, Loffredo CA. Hepatitis C virus Genotype 1a core gene nucleotide patterns associated with hepatocellular carcinoma risk. J Gen Virol 2015; 96:2928-2937. [PMID: 26296571 DOI: 10.1099/jgv.0.000219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Specific sequence changes in codons 70 and 91 of the hepatitis C virus genotype 1b (HCV GT1b) core gene have been associated with increased risk of hepatocellular carcinoma (HCC). Essentially all previous studies were conducted in Asian populations with a wide range of liver disease, and none were conducted specifically in GT1a-infected individuals. We conducted a pilot study in a multiethnic population in the USA with HCV-related cirrhosis to determine if this association extended to GT1a-infected individuals and to determine if other sequence changes in the HCV core gene were associated with HCC risk. HCV core gene sequences from sera of 90 GT1 HCV carriers with cirrhosis (42 with HCC) were analysed using standard RT-PCR-based procedures. Nucleotide sequence data were compared with reference sequences available from GenBank. The frequency of sequence changes in codon 91 was not statistically different between HCC (7/19) and non-HCC (11/22) GT1b carriers. In GT1a carriers, sequence changes in codon 91 were observed less often than in GT1b carriers but were not observed in non-HCC subjects (4/23 vs 0/26, P = 0.03, Fisher's exact test). Sequence changes in codon 70 were not distributed differently between HCC and non-HCC GT1a and 1b carriers. Most importantly, for GT1a carriers, a panel of specific nucleotide changes in other codons was collectively present in all subjects with HCC, but not in any of the non-HCC patients. The utility of this test panel for early detection of HCC in GT1a-infected individuals needs to be assessed in larger populations, including longitudinal studies.
Collapse
Affiliation(s)
- Brent Korba
- Department of Microbiology and Immunology, Georgetown University, Washington, DC 20057, USA
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Kirti Shetty
- Division of Gastroenterology & Hepatology, Johns Hopkins University, Sibley Memorial Hospital, Washington, DC 20016, USA
| | - Alexei Medvedev
- Department of Microbiology and Immunology, Georgetown University, Washington, DC 20057, USA
| | - Prasanth Viswanathan
- Department of Microbiology and Immunology, Georgetown University, Washington, DC 20057, USA
| | - Rency Varghese
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
| | - Bin Zhou
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
| | - Rabindra Roy
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
| | - Kepher Makambi
- Department of Biostatistics, Georgetown University, Washington, DC 20057, USA
| | - Habtom Ressom
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
| | - Christopher A Loffredo
- Department of Biostatistics, Georgetown University, Washington, DC 20057, USA
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
3
|
Hussein N, Zekri ARN, Abouelhoda M, Alam El-Din HM, Ghamry AA, Amer MA, Sherif GM, Bahnassy AA. New insight into HCV E1/E2 region of genotype 4a. Virol J 2014; 11:231. [PMID: 25547228 PMCID: PMC4304183 DOI: 10.1186/s12985-014-0231-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/17/2014] [Indexed: 01/21/2023] Open
Abstract
Introduction Hepatitis C virus (HCV) genome contains two envelope proteins (E1 and E2) responsible for the virus entry into the cell. There is a substantial lack of sequences covering the full length of E1/E2 region for genotype 4. Our study aims at providing new sequences as well as characterizing the genetic divergence of the E1/E2 region of HCV 4a using our new sequences along with all publicly available datasets. Methods The genomic segments covering the whole E1/E2 region were isolated from Egyptian HCV patients and sequenced. The resulting 36 sequences 36 were analyzed using sequence analysis techniques to study variability within and among hosts in the same time point. Furthermore, previously published HCV E1/E2 sequence datasets for genotype 4a were retrieved and categorized according to the geographical location and date of isolation and were used for further analysis of variability among Egyptian over a period of 15 years, also compared with non-Egyptian sequences to figure out region-specific variability. Results Phylogenetic analysis of the new sequences has shown variability within the host and among different individuals in the same time point. Analysis of the 36 sequences along with the Egyptian sequences (254 sequences in E1 in the period from 1997 to 2010 and 8 E2 sequences in the period from 2006 to 2010) has shown temporal change over time. Analysis of the new HCV sequences with the non-Egyptian sequences (182 sequences in E1 and 155 sequences in the E2) has shown region specific variability. The molecular clock rate of E1 was estimated to be 5E-3 per site per year for Egyptian and 5.38E-3 for non-Egyptian. The clock rate of E2 was estimated to be 8.48E per site per year for Egyptian and 6.3E-3 for non-Egyptian. Conclusion The results of this study support the high rate of evolution of the Egyptian HCV genotype 4a. It has also revealed significant level of genetic variability among sequences from different regions in the world. Electronic supplementary material The online version of this article (doi:10.1186/s12985-014-0231-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nehal Hussein
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Fom El-Khalig, Cairo, 11796, Egypt.
| | - Abdel-Rahman N Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Fom El-Khalig, Cairo, 11796, Egypt.
| | - Mohamed Abouelhoda
- Faculty of Engineering, Cairo University, Giza, Egypt. .,Center for Informatics Sciences, Nile University, Giza, Egypt.
| | - Hanaa M Alam El-Din
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Fom El-Khalig, Cairo, 11796, Egypt.
| | | | - Mahmoud A Amer
- Faculty of Science, Zoology Department, Cairo University, Giza, Egypt.
| | - Ghada M Sherif
- Biostatistic & Epidemiology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Abeer A Bahnassy
- Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| |
Collapse
|
4
|
High-resolution quantification of hepatitis C virus genome-wide mutation load and its correlation with the outcome of peginterferon-alpha2a and ribavirin combination therapy. PLoS One 2014; 9:e100131. [PMID: 24950220 PMCID: PMC4065037 DOI: 10.1371/journal.pone.0100131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/21/2014] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is a highly mutable RNA virus and circulates as a heterogeneous population in individual patients. The magnitude of such population heterogeneity has long been proposed to be linked with diverse clinical phenotypes, including antiviral therapy. Yet data accumulated thus far are fairly inconclusive. By the integration of long RT-PCR with 454 sequencing, we have built a pipeline optimized for the quantification of HCV genome-wide mutation load at 1% resolution of mutation frequency, followed by a retrospective study to examine the role of HCV mutation load in peginterferon-alpha2a and ribavirin combination antiviral therapy. Genome-wide HCV mutation load varied widely with a range from 92 to 1639 mutations and presented a Poisson distribution among 56 patients (Kolmogorov-Smirnov statistic = 0.078, p = 0.25). Patients achieving sustained virological response (n = 26) had significantly lower mutation loads than that in null responders (n = 30) (mean and standard derivation: 524±279 vs. 805±271, p = 0.00035). All 36,818 mutations detected in 56 patients displayed a power-law distribution in terms of mutation frequency in viral population. The low-frequency mutation load, but not the high-frequency load, was proportional firmly to the total mutation load. In-depth analyses revealed that intra-patient HCV population structure was shaped by multiple factors, including immune pressure, strain difference and genetic drift. These findings explain previous conflicting reports using low-resolution methods and highlight a dominant role of natural selection in response to therapeutic intervention. By attaining its signatures from complex interaction between host and virus, the high-resolution quantification of HCV mutation load predicts outcomes from interferon-based antiviral therapy and could also be a potential biomarker in other clinical settings.
Collapse
|