1
|
de Oliveira LA, de Morais IRB, Marchioro SB, de Almeida GB, de Almeida de Souza GH, da Silva Ferreira T, Rossoni R, de Oliveira Barbosa D, Navarini VJ, Croda J, Torres AJL, Simionatto S. Assessment of the BNT162B2 COVID-19 vaccine immune response in Brazilian indigenous adolescents. Vaccine 2025; 43:126494. [PMID: 39571350 DOI: 10.1016/j.vaccine.2024.126494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND COVID-19 vaccination of minors is crucial for global pandemic control, especially among indigenous populations, who are often more vulnerable due to limited healthcare resources and communal living settings. OBJECTIVES To assess the immunogenicity responses of the BNT162b2 vaccine in immunized Brazilian indigenous adolescents. METHODS A cohort study was conducted with indigenous adolescents aged 12 to 18 years residing in the largest peri-urban indigenous region in Brazil. SARS-CoV-2-specific immune responses were analyzed before (D1) and after (D2) completion of the vaccination schedule. Demographic data were collected using a questionnaire. RESULTS Of the 129 adolescents invited, 98 (75.96 %) participated in the study. Most were of Guarani ethnicity, single, had lower incomes, and were educated only to the elementary level. Post-vaccination, a statistically significant increase was noted in IgG concentration (24.03 % to 37.02 %). Increases were observed in B lymphocytes (11.88 to 13.92 cells/mm3), memory B cells (13.58 to 15.96 cells/mm3), NK cells (20.23 to 24.08 cells/mm3), and non-classical monocytes (9.23 to 11.34 cells/mm3), while CD8+ T cells decreased (24.41 to 21.69 cells/mm3). Adolescents with prior exposure to the virus showed increased levels of B lymphocytes and CD8+ T cells. No significant changes were observed in other cell subpopulations from exposure to the virus. CONCLUSION Elevated levels of antibodies and certain cell subpopulations were observed in vaccinated adolescents, confirming the effectiveness of the BNT162b2 vaccine in maintaining humoral and cellular responses. This study is the first to describe data from indigenous minors vaccinated against COVID-19 with the BNT162b2 vaccine, highlighting the importance of vaccination efforts and the potential need for booster doses.
Collapse
Affiliation(s)
- Laís Albuquerque de Oliveira
- Health Science Research Laboratory, Federal University of Grande Dourados, Dourados, Mato Grosso, do Sul, Brazil
| | - Isa Rita Brito de Morais
- Health Science Research Laboratory, Federal University of Grande Dourados, Dourados, Mato Grosso, do Sul, Brazil
| | - Silvana Beutinger Marchioro
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Gabriel Barroso de Almeida
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Tiago da Silva Ferreira
- Health Science Research Laboratory, Federal University of Grande Dourados, Dourados, Mato Grosso, do Sul, Brazil
| | - Regina Rossoni
- Health Science Research Laboratory, Federal University of Grande Dourados, Dourados, Mato Grosso, do Sul, Brazil
| | - Dyjaene de Oliveira Barbosa
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Vinicius João Navarini
- University Hospital of the Federal University of Grande Dourados - Brazilian Hospital Services Company EBSERH, Dourados, Mato Grosso, do Sul, Brazil
| | - Julio Croda
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil.; Oswaldo Cruz Foundation, Campo Grande, Brazil.; Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, New Haven, CT, United States of America
| | - Alex José Leite Torres
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Simone Simionatto
- Health Science Research Laboratory, Federal University of Grande Dourados, Dourados, Mato Grosso, do Sul, Brazil..
| |
Collapse
|
2
|
Rosendahl S, Trudzinski FC, Polke M, Herth FJF, Kreuter M, Giese T. SARS-CoV-2 Vaccination in Primary Humoral Immunodeficiency: Experience from a German Lung Clinic. Respiration 2024; 104:349-359. [PMID: 39701048 DOI: 10.1159/000543146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION During the COVID-19 pandemic, the effectiveness of vaccines against SARS-CoV-2 in immunodeficient patients not only did affect the individual risk of these vulnerable patients but endangered the selection of new variants of concern due to prolonged virus shedding by these patients. METHODS In a tertiary center for pulmonary diseases, we investigated the immune response of 11 patients with primary humoral immunodeficiency and 13 healthy controls on the humoral and cellular level after full vaccination with an mRNA or vector vaccine against SARS-CoV-2. RESULTS In the majority of patients (73%), we found antibodies against the spike protein above the threshold of positivity. Likewise, patients showed a promising cellular response: the upregulated production of INFγ, TNFα, and CXCL10 by T cells did not differ from the response of healthy controls. CONCLUSION These results stress the importance to further discern an adequate immunological correlate of protection and the need to follow the effect of booster immunizations in this population at risk.
Collapse
Affiliation(s)
- Sophie Rosendahl
- Department of Pneumology and Critical Care Medicine, Thoraxklinik University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Franziska C Trudzinski
- Department of Pneumology and Critical Care Medicine, Thoraxklinik University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Markus Polke
- Department of Pneumology and Critical Care Medicine, Thoraxklinik University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Felix J F Herth
- Department of Pneumology and Critical Care Medicine, Thoraxklinik University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Kreuter
- Mainz Center for Pulmonary Medicine, Department of Pneumology, Mainz University Medical Center and Department of Pulmonary, Critical Care and Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Thomas Giese
- Institute of Immunology and German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
3
|
Avelino-Silva VI, Bruhn R, Zurita KG, Deng X, Yu EA, Grebe E, Stone M, Lanteri MC, Spencer BR, Busch MP, Custer B. SARS-CoV-2 antibody levels and long COVID occurrence in blood donors. Transfusion 2024; 64:1719-1731. [PMID: 38984497 DOI: 10.1111/trf.17952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Long COVID is a common condition lacking consensus definition; determinants remain incompletely understood. Characterizing immune profiles associated with long COVID could support the development of preventive and therapeutic strategies. METHODS We used a survey to investigate blood donors' infection/vaccination history and acute/persistent symptoms following COVID-19. The prevalence of long COVID was evaluated using self-report and an adapted definition from the RECOVER study. We evaluated factors associated with long COVID, focusing on anti-spike and anti-nucleocapsid SARS-CoV-2 antibodies. Lastly, we investigated long COVID clinical subphenotypes using hierarchical clustering. RESULTS Of 33,610 participants, 16,003 (48%) reported having had COVID-19; 1853 (12%) had self-reported long COVID, 685 (4%) met an adapted RECOVER definition, and 2050 (13%) met at least one definition. Higher anti-nucleocapsid levels measured 12-24 weeks post-infection were associated with higher risk of self-reported and RECOVER long COVID. Higher anti-spike IgG levels measured 12-24 weeks post-infection were associated with lower risk of self-reported long COVID. Higher total anti-spike measured 24-48 weeks post-infection was associated with lower risk of RECOVER long COVID. Cluster analysis identified four clinical subphenotypes; patterns included neurological and psychiatric for cluster 1; neurological and respiratory for cluster 2; multi-systemic for cluster 3; and neurological for cluster 4. DISCUSSION Long COVID prevalence in blood donors varies depending on the adopted definition. Anti-SARS-CoV-2 antibodies were time-dependently associated with long COVID; higher anti-nucleocapsid levels were associated with higher risk; and higher anti-spike levels were associated with lower risk of long COVID. Different underlying pathophysiologic mechanisms may be associated with distinct clinical subphenotypes.
Collapse
Affiliation(s)
- Vivian I Avelino-Silva
- Vitalant Research Institute, California, San Francisco, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, California, San Francisco, USA
| | - Roberta Bruhn
- Vitalant Research Institute, California, San Francisco, USA
- Department of Laboratory Medicine, University of California San Francisco, California, San Francisco, USA
| | - Karla G Zurita
- Vitalant Research Institute, California, San Francisco, USA
- Department of Laboratory Medicine, University of California San Francisco, California, San Francisco, USA
| | - Xutao Deng
- Vitalant Research Institute, California, San Francisco, USA
- Department of Laboratory Medicine, University of California San Francisco, California, San Francisco, USA
| | - Elaine A Yu
- Vitalant Research Institute, California, San Francisco, USA
- Department of Laboratory Medicine, University of California San Francisco, California, San Francisco, USA
| | - Eduard Grebe
- Vitalant Research Institute, California, San Francisco, USA
- Department of Laboratory Medicine, University of California San Francisco, California, San Francisco, USA
- South African Centre for Epidemiological Modeling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | - Mars Stone
- Vitalant Research Institute, California, San Francisco, USA
- Department of Laboratory Medicine, University of California San Francisco, California, San Francisco, USA
| | - Marion C Lanteri
- Department of Laboratory Medicine, University of California San Francisco, California, San Francisco, USA
- Creative Testing Solutions, Tempe, Arizona, USA
| | - Bryan R Spencer
- Scientific Affairs, American Red Cross, Rockville, Maryland, USA
| | - Michael P Busch
- Vitalant Research Institute, California, San Francisco, USA
- Department of Laboratory Medicine, University of California San Francisco, California, San Francisco, USA
| | - Brian Custer
- Vitalant Research Institute, California, San Francisco, USA
- Department of Laboratory Medicine, University of California San Francisco, California, San Francisco, USA
| |
Collapse
|
4
|
Nicolai E, Tomassetti F, Pignalosa S, Redi S, Marino M, Basile U, Ciotti M. The Evolution of Serological Assays during Two Years of the COVID-19 Pandemic: From an Easy-to-Use Screening Tool for Identifying Current Infections to Laboratory Algorithms for Discovering Immune Protection and Optimizing Vaccine Administration. COVID 2024; 4:1272-1290. [DOI: 10.3390/covid4080091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
The emergence of COVID-19 has evolved into a global pandemic, causing an unprecedented public health crisis marked by unprecedented levels of morbidity never seen in the recent past. Considerable research efforts have been made in the scientific community to establish an optimal method to identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and to understand the induced immune response. This review examined the development of serological tests during the COVID-19 pandemic, considering the factors affecting sensitivity and specificity, which are key to promote an efficient vaccination strategy for public health. The market has witnessed the introduction of various serological tests for the detection of SARS-CoV-2, such as the chemiluminescence immunoassay (CLIA), which emerged as a powerful and rapid tool to monitor the antibody response before and after vaccination or infection. Therefore, developing serological tests by studying antibody trends and persistence is essential for creating long-term strategies. Our analysis underscores the multifaceted applications of serological tests in pandemic management with a focus on the critical insights they provide into antibody dynamics that help in managing the ongoing pandemic and shaping future public health initiatives, providing a basis for optimizing the future response to viral threats.
Collapse
Affiliation(s)
- Eleonora Nicolai
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Flaminia Tomassetti
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Stefano Pignalosa
- Department of Clinical Pathology, Santa Maria Goretti Hospital, A.U.S.L. Latina, 04100 Latina, Italy
| | - Serena Redi
- Department of Clinical Pathology, Santa Maria Goretti Hospital, A.U.S.L. Latina, 04100 Latina, Italy
| | - Mariapaola Marino
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli” I.R.C.C.S., 00168 Rome, Italy
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti Hospital, A.U.S.L. Latina, 04100 Latina, Italy
| | - Marco Ciotti
- Department of Laboratory Medicine, Virology Unit, Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
| |
Collapse
|
5
|
Rzymski P, Niedziela J, Poniedziałek B, Rosińska J, Zarębska-Michaluk D, Sobala-Szczygieł B, Flisiak R, Gąsior M, Jaroszewicz J. Humoral anti-SARS-CoV-2 response in patients with different long COVID phenotypes. Virology 2024; 596:110118. [PMID: 38805803 DOI: 10.1016/j.virol.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Long COVID (LC) is characterized by persistent symptoms following SARS-CoV-2 infection, with various mechanisms offered to explain its pathogenesis. This study explored whether adaptive humoral anti-SARS-CoV-2 responses differ in LC. Unvaccinated COVID-19 convalescents (n = 200) were enrolled, with 21.5% (n = 43) presenting LC three months post-infection. LC diagnosis was based on persistent symptom(s) and alterations in biochemical/clinical markers; three phenotypes were distinguished: cardiological, pulmonary, and psychiatric LC. All three phenotypes were characterized by significantly decreased seroprevalence of IgG antibodies against nucleocapsid (anti-NP). LC was associated with decreased odds of testing positive for anti-NP (OR = 0.35, 95%CI: 0.16-0.78, p = 0.001). Seropositive LC patients had lower anti-S1 and anti-S2 levels than individuals without LC, and those with pulmonary and psychological phenotypes also revealed decreased anti-RBD concentrations. The results indicate that LC can be characterized by diminished humoral response to SARS-CoV-2. The potential implication of this phenomenon in post-acute viral sequelae is discussed.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Jacek Niedziela
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Joanna Rosińska
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | | | | | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, Bialystok, Poland
| | - Mariusz Gąsior
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jerzy Jaroszewicz
- Department of Infectious Diseases and Hepatology, Medical University of Silesia, Bytom, Poland
| |
Collapse
|
6
|
Theel ES, Kirby JE, Pollock NR. Testing for SARS-CoV-2: lessons learned and current use cases. Clin Microbiol Rev 2024; 37:e0007223. [PMID: 38488364 PMCID: PMC11237512 DOI: 10.1128/cmr.00072-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYThe emergence and worldwide dissemination of SARS-CoV-2 required both urgent development of new diagnostic tests and expansion of diagnostic testing capacity on an unprecedented scale. The rapid evolution of technologies that allowed testing to move out of traditional laboratories and into point-of-care testing centers and the home transformed the diagnostic landscape. Four years later, with the end of the formal public health emergency but continued global circulation of the virus, it is important to take a fresh look at available SARS-CoV-2 testing technologies and consider how they should be used going forward. This review considers current use case scenarios for SARS-CoV-2 antigen, nucleic acid amplification, and immunologic tests, incorporating the latest evidence for analytical/clinical performance characteristics and advantages/limitations for each test type to inform current debates about how tests should or should not be used.
Collapse
Affiliation(s)
- Elitza S. Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - James E. Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nira R. Pollock
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Li L, Wang F, He X, Pei T, Lu J, Zhang Z, Zhao P, Xue J, Zhu L, Chen X, Yan Z, Lu Y, Zhuang J. Longitudinal Dynamics of Immune Response in Occupational Populations Post COVID-19 Infection in the Changning District of Shanghai, China. Viruses 2024; 16:672. [PMID: 38793554 PMCID: PMC11125686 DOI: 10.3390/v16050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Monitoring the long-term changes in antibody and cellular immunity following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is crucial for understanding immune mechanisms that prevent reinfection. In March 2023, we recruited 167 participants from the Changning District, Shanghai, China. A subset of 66 participants that were infected between November 2022 and January 2023 was selected for longitudinal follow-up. The study aimed to investigate the dynamics of the immune response, including neutralizing antibodies (NAbs), anti-spike (S)-immunoglobulin G (IgG), anti-S-IgM, and lymphocyte profiles, by analyzing peripheral blood samples collected three to seven months post infection. A gradual decrease in NAbs and IgG levels were observed from three to seven months post infection. No significant differences in NAbs and IgG titers were found across various demographics, including age, sex, occupation, and symptomatic presentation, across five follow-up assessments. Additionally, a strong correlation between NAbs and IgG levels was identified. Lymphocyte profiles showed a slight change at five months but had returned to baseline levels by seven months post infection. Notably, healthcare workers exhibited lower B-cell levels compared to police officers. Our study demonstrated that the immune response to SARS-CoV-2 infection persisted for at least seven months. Similar patterns in the dynamics of antibody responses and cellular immunity were observed throughout this period.
Collapse
Affiliation(s)
- Li Li
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Fengge Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 130 Dong’an Road, Shanghai 200032, China;
- Department of Epidemiology, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, 130 Dong’an Road, Shanghai 200032, China
| | - Xiaoding He
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Tingting Pei
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Jiani Lu
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Zhan Zhang
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Ping Zhao
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Jiayu Xue
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Lin Zhu
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Xinxin Chen
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Zijie Yan
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Yihan Lu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 130 Dong’an Road, Shanghai 200032, China;
- Department of Epidemiology, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, 130 Dong’an Road, Shanghai 200032, China
| | - Jianlin Zhuang
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| |
Collapse
|
8
|
Rottmayer K, Schwarze M, Jassoy C, Hoffmann R, Loeffler-Wirth H, Lehmann C. Potential of a Bead-Based Multiplex Assay for SARS-CoV-2 Antibody Detection. BIOLOGY 2024; 13:273. [PMID: 38666885 PMCID: PMC11047883 DOI: 10.3390/biology13040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Serological assays for SARS-CoV-2 play a pivotal role in the definition of whether patients are infected, the understanding of viral epidemiology, the screening of convalescent sera for therapeutic and prophylactic purposes, and in obtaining a better understanding of the immune response towards the virus. The aim of this study was to investigate the performance of a bead-based multiplex assay. This assay allowed for the simultaneous testing of IgG antibodies against SARS-CoV-2 spike, S1, S2, RBD, and nucleocapsid moieties and S1 of seasonal coronaviruses hCoV-22E, hCoV-HKU1, hCoV-NL63, and hCoV-OC43, as well as MERS and SARS-CoV. We compared the bead-based multiplex assay with commercial ELISA tests. We tested the sera of 27 SARS-CoV-2 PCR-positive individuals who were previously tested with different ELISA assays. Additionally, we investigated the reproducibility of the results by means of multiple testing of the same sera. Finally, the results were correlated with neutralising assays. In summary, the concordance of the qualitative results ranged between 78% and 96% depending on the ELISA assay and the specific antigen. Repeated freezing-thawing cycles resulted in reduced mean fluorescence intensity, while the storage period had no influence in this respect. In our test cohort, we detected up to 36% of sera positive for the development of neutralising antibodies, which is in concordance with the bead-based multiplex and IgG ELISA.
Collapse
Affiliation(s)
- Karla Rottmayer
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Universität Leipzig, Johannisallee 32, 04103 Leipzig, Germany
| | - Mandy Schwarze
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany; (M.S.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
| | - Christian Jassoy
- Institute for Medical Microbiology and Virology, Leipzig University Hospital and Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany;
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany; (M.S.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, IZBI, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany;
| | - Claudia Lehmann
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Universität Leipzig, Johannisallee 32, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Lijeskić O, Bauman N, Marković M, Srbljanović J, Bobić B, Zlatković Đ, Štajner T. SARS-CoV-2 specific antibody response after an mRNA vaccine as the third dose: Homologous versus heterologous boost. Vaccine 2024; 42:1665-1672. [PMID: 38342717 DOI: 10.1016/j.vaccine.2024.01.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
The aim of this study was to evaluate immunogenicity and longevity of the humoral immune response within six months after the homologous (BNT162b2/BNT162b2) or heterologous (BBIBP-CorV/BNT162b2) third dose, and to assess breakthrough infections among vaccinees during the Omicron wave in Serbia. Serum samples were analyzed at four timepoints: five months after the primary series; three weeks, three months, and six months after the boost. IgG antibodies against the receptor-binding domain of the spike protein were detected using enzyme-linked fluorescence assay. Both homologous (n = 55) and heterologous group (n = 36) showed a highly significant increase in antibody concentrations (p < 0.001) three weeks after the boost. A moderate inverse correlation between the age of recipients and the antibody levels at three weeks post-boost was observed in the homologous group (p = 0.02, r = -0.37), while the same correlation was not significant for heterologous group (p = 0.55, r = -0.15). Heterologous group had significantly higher antibody concentrations than homologous group at three weeks (Median 851.4(IQR 766.6-894.1); 784.3(676.9-847.4); p = 0.03) and three months post-boost (766.6(534.8-798.9); 496.8(361.6-664.0); p < 0.001). However, a significant decline in antibody response over time was noted for both strategies. The overall incidence of breakthrough cases was estimated at 36.36% (20/55) for homologous, and 16.67% (6/36) for heterologous group, but none of them required hospitalization. Although observed incidence in the homologous group was more than double when compared to the heterologous group, this difference was not statistically significant, most likely due to the small sample size. In conclusion, waning immunity after inactivated vaccine can be recovered by BNT162b2 heterologous boost regardless of the age of recipients, and both boost strategies induced potent humoral immune response and protection against severe COVID-19 during the Omicron wave. However, as the observed incidence of breakthrough infections was higher in the homologous group, although non-significant, this finding could indicate an advantage of heterologous approach.
Collapse
Affiliation(s)
- Olivera Lijeskić
- University of Belgrade, Institute for Medical Research, National Institute of Republic of Serbia, Centre of Excellence for Food- and Vector-borne Zoonoses, Group for Microbiology and Parasitology, 11000 Belgrade, Serbia
| | - Neda Bauman
- University of Belgrade, Institute for Medical Research, National Institute of Republic of Serbia, Centre of Excellence for Food- and Vector-borne Zoonoses, Group for Microbiology and Parasitology, 11000 Belgrade, Serbia
| | - Miloš Marković
- University of Belgrade, Faculty of Medicine, Institute of Microbiology and Immunology, Department of Immunology, 11000 Belgrade, Serbia
| | - Jelena Srbljanović
- University of Belgrade, Institute for Medical Research, National Institute of Republic of Serbia, Centre of Excellence for Food- and Vector-borne Zoonoses, Group for Microbiology and Parasitology, 11000 Belgrade, Serbia
| | - Branko Bobić
- University of Belgrade, Institute for Medical Research, National Institute of Republic of Serbia, Centre of Excellence for Food- and Vector-borne Zoonoses, Group for Microbiology and Parasitology, 11000 Belgrade, Serbia
| | - Đorđe Zlatković
- University of Belgrade, Institute for Medical Research, National Institute of Republic of Serbia, Centre of Excellence for Food- and Vector-borne Zoonoses, Group for Microbiology and Parasitology, 11000 Belgrade, Serbia
| | - Tijana Štajner
- University of Belgrade, Institute for Medical Research, National Institute of Republic of Serbia, Centre of Excellence for Food- and Vector-borne Zoonoses, Group for Microbiology and Parasitology, 11000 Belgrade, Serbia.
| |
Collapse
|
10
|
Poniedziałek B, Sikora D, Hallmann E, Brydak L, Rzymski P. Influenza vaccination as a prognostic factor of humoral IgA responses to SARS-CoV-2 infection. Cent Eur J Immunol 2024; 49:11-18. [PMID: 38812601 PMCID: PMC11130984 DOI: 10.5114/ceji.2024.135462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/18/2024] [Indexed: 05/31/2024] Open
Abstract
There is evidence that influenza vaccination may provide additional benefits by inducing training of innate immunity and increasing humoral responses to heterologous challenges. Immunoglobulin A (IgA) antibodies dominate the early phase of the adaptive response to SARS-CoV-2 infection, but whether their production may be associated with previous influenza vaccination has not been a subject of any study. This study compared serum SARS-CoV-2-specific IgA responses, measured with Microblot-Array assay, in individuals who experienced COVID-19 (N = 1318) and differed in the status of the seasonal influenza vaccine, age, sex, and disease severity. Influenza-vaccinated individuals had a higher seroprevalence of IgA antibodies against nucleocapsid (anti-NP; by 10.1%), receptor-binding domain of spike protein (anti-RBD; by 11.8%) and the S2 subunit of spike protein (anti-S2; by 6.8%). Multivariate analysis, including age, sex, and COVID-19 severity, confirmed that receiving the influenza vaccine was associated with higher odds of being seropositive for anti-NP (OR, 95% CI = 1.57, 1.2-2.0), anti-RBD (OR, 95% CI = 1.6, 1.3-2.0), and anti-S2 (OR, 95% CI = 1.9, 1.4-2.7), as well as being seropositive for at least one anti-SARS-CoV-2 IgA antibody (OR, 95% CI = 1.7, 1.3-2.1) and all three of them (OR, 95% CI = 2.6, 1.7-4.0). Age ≥ 50 years was an additional factor predicting better IgA responses. However, the concentration of particular antibodies in seropositive subjects did not differ in relation to the influenza vaccination status. The study evidenced that influenza vaccination was associated with improved serum IgA levels produced in response to SARS-CoV-2 infection. Further studies are necessary to assess whether trained immunity is involved in the observed phenomenon.
Collapse
Affiliation(s)
- Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Dominika Sikora
- Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| | - Ewelina Hallmann
- Laboratory of Influenza Viruses and Respiratory Infection Viruses, Department of Virology at the National Institute of Public Health NIH – National Research Institute in Warsaw, Poland
| | - Lidia Brydak
- Laboratory of Influenza Viruses and Respiratory Infection Viruses, Department of Virology at the National Institute of Public Health NIH – National Research Institute in Warsaw, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
11
|
Horbach IS, de Souza Azevedo A, Schwarcz WD, Alves NDS, de Moura Dias B, Setatino BP, da Cruz Moura L, de Souza AF, Denani CB, da Silva SA, Pimentel TG, de Oliveira Silva Ferreira V, Azamor T, Ano Bom APD, da Penha Gomes Gouvea M, Mill JG, Valim V, Polese J, Campi-Azevedo AC, Peruhype-Magalhães V, Teixeira-Carvalho A, Martins-Filho OA, de Lima SMB, de Sousa Junior IP. Plaque Reduction Neutralization Test (PRNT) Accuracy in Evaluating Humoral Immune Response to SARS-CoV-2. Diseases 2024; 12:29. [PMID: 38248380 PMCID: PMC10814169 DOI: 10.3390/diseases12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Massive vaccination positively impacted the SARS-CoV-2 pandemic, being a strategy to increase the titers of neutralizing antibodies (NAbs) in the population. Assessing NAb levels and understanding the kinetics of NAb responses is critical for evaluating immune protection. In this study, we optimized and validated a PRNT50 assay to assess 50% virus neutralization and evaluated its accuracy to measure NAbs to the original strain or variant of SARS-CoV-2. The optimal settings were selected, such as the cell (2 × 105 cells/well) and CMC (1.5%) concentrations and the viral input (~60 PFU/well) for PRNT-SARS-CoV-2 with cut-off point = 1.64 log5 based on the ROC curve (AUC = 0.999). The validated PRNT-SARS-CoV-2 assay presented high accuracy with an intraassay precision of 100% for testing samples with different NAb levels (low, medium, and high titers). The method displays high selectivity without cross-reactivity with dengue (DENV), measles (MV), zika (ZIKV), and yellow fever (YFV) viruses. In addition, the standardized PRNT-SARS-CoV-2 assay presented robustness when submitted to controlled variations. The validated PRNT assay was employed to test over 1000 specimens from subjects with positive or negative diagnoses for SARS-CoV-2 infection. Patients with severe COVID-19 exhibited higher levels of NAbs than those presenting mild symptoms for both the Wuhan strain and Omicron. In conclusion, this study provides a detailed description of an optimized and validated PRNT50 assay to monitor immune protection and to subsidize surveillance policies applied to epidemiologic studies of COVID-19.
Collapse
Affiliation(s)
- Ingrid Siciliano Horbach
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
- Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Adriana de Souza Azevedo
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Waleska Dias Schwarcz
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Nathalia dos Santos Alves
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Brenda de Moura Dias
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Bruno Pimenta Setatino
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Luma da Cruz Moura
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Ariane Faria de Souza
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Caio Bidueira Denani
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
- Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Stephanie Almeida da Silva
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Thiago Goes Pimentel
- Núcleo de Apoio Administrativo VDINV, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Victor de Oliveira Silva Ferreira
- Seção de Validação Analítica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Tamiris Azamor
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.P.D.A.B.)
| | - Ana Paula Dinis Ano Bom
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.P.D.A.B.)
| | - Maria da Penha Gomes Gouvea
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (HUCAM-UFES/EBSERH), Vitória 29041-295, Brazil; (M.d.P.G.G.); (J.G.M.); (V.V.)
| | - José Geraldo Mill
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (HUCAM-UFES/EBSERH), Vitória 29041-295, Brazil; (M.d.P.G.G.); (J.G.M.); (V.V.)
| | - Valéria Valim
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (HUCAM-UFES/EBSERH), Vitória 29041-295, Brazil; (M.d.P.G.G.); (J.G.M.); (V.V.)
| | - Jessica Polese
- Programa de Pós-Graduação em Ciências Fisiológicas da Universidade Federal do Espírito Santo, Vitória 29500-000, Brazil;
| | - Ana Carolina Campi-Azevedo
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte 30190-002, Brazil; (A.C.C.-A.); (V.P.-M.); (A.T.-C.); (O.A.M.-F.)
| | - Vanessa Peruhype-Magalhães
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte 30190-002, Brazil; (A.C.C.-A.); (V.P.-M.); (A.T.-C.); (O.A.M.-F.)
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte 30190-002, Brazil; (A.C.C.-A.); (V.P.-M.); (A.T.-C.); (O.A.M.-F.)
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte 30190-002, Brazil; (A.C.C.-A.); (V.P.-M.); (A.T.-C.); (O.A.M.-F.)
| | - Sheila Maria Barbosa de Lima
- Departamento de Desenvolvimento Experimental e Pré-clínico (DEDEP), Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | | |
Collapse
|
12
|
de Oliveira MI, Aciole MR, Neves PAF, Silva VPOE, Silva MPOE, de Lorena VMB, de Araújo PSR. A stronger antibody response in increased disease severity of SARS-CoV-2. BMC Infect Dis 2024; 24:17. [PMID: 38166763 PMCID: PMC10762998 DOI: 10.1186/s12879-023-08923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND An assessment of the factors that interfere with serum levels and the persistence of anti-SARs-CoV-2 IgG antibodies is essential in order to estimate the risk of reinfection and to plan vaccination. We analyzed the impact of the severity of coronavirus disease 2019 (COVID-19) and the clinical and biological factors regarding the persistence of SARs-CoV-2 anti-spike protein (IgG-S) antibodies at 12 months. METHODS This was an observational, longitudinal study with individuals who had recovered from COVID-19 between August 2020 and June 2021. Peripheral blood samples were collected from volunteers who were hospitalized (SERIOUS COVID-19) and those who required no hospitalization (COVID-19 LIGHT). Samples were grouped according to days after symptom onset: up to 90, between 91 and 180, ≥ 180 days after symptom onset. A semiquantitative test for IgG anti-spike protein S1(IgG-S1) was used. RESULTS We analyzed 238 individuals who had recovered from COVID-19, of whom 87 had been hospitalized and 151 had not. They provided 148 and 220 samples, respectively. Among those hospitalized, males (65.5%), volunteers aged over 60 years (41.1%), comorbidities such as arterial hypertension (67.8%) and diabetes mellitus (37.9%) were most frequent. We observed higher median serum IgG-S1 titers among those who had recovered from COVID-19 and had been hospitalized, at all collection time intervals (p < 0.001). We observed a weak correlation of increasing age with humoral IgG-S1 response (Spearman correlation = 0.298). There was a greater probability of IgG-S1 antibody persistence over time among samples from hospitalized individuals compared to samples from non-hospitalized participants (p = 0.001). CONCLUSION This study has revealed higher titers and a higher probability of the persistence of IgG-S1 in severe cases after SARs-CoV-2 primary infection in unvaccinated recovered patients. Thus, in this study, the severe clinical presentation of COVID-19 was the main factor influencing serum levels and the persistence of IgG-S1 antibodies in COVID-19.
Collapse
Affiliation(s)
- Marta Iglis de Oliveira
- Department of Tropical Medicine, Medical Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Department of Infectious Diseases, Hospital das Clínicas, Brazilian Company of Hospital Services (EBSERH), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Melayne Rocha Aciole
- Department of Tropical Medicine, Medical Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Patrícia Areias Feitosa Neves
- Department of Tropical Medicine, Medical Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Virginia Maria Barros de Lorena
- Department of Tropical Medicine, Medical Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Fiocruz-PE, Recife, Pernambuco, Brazil
| | - Paulo Sérgio Ramos de Araújo
- Department of Tropical Medicine, Medical Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
- Department of Parasitology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Fiocruz-PE, Recife, Pernambuco, Brazil.
- Department of Infectious Diseases, Hospital das Clínicas, Brazilian Company of Hospital Services (EBSERH), Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
13
|
Holdenrieder S, Dos Santos Ferreira CE, Izopet J, Theel ES, Wieser A. Clinical and laboratory considerations: determining an antibody-based composite correlate of risk for reinfection with SARS-CoV-2 or severe COVID-19. Front Public Health 2023; 11:1290402. [PMID: 38222091 PMCID: PMC10788057 DOI: 10.3389/fpubh.2023.1290402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024] Open
Abstract
Much of the global population now has some level of adaptive immunity to SARS-CoV-2 induced by exposure to the virus (natural infection), vaccination, or a combination of both (hybrid immunity). Key questions that subsequently arise relate to the duration and the level of protection an individual might expect based on their infection and vaccination history. A multi-component composite correlate of risk (CoR) could inform individuals and stakeholders about protection and aid decision making. This perspective evaluates the various elements that need to be accommodated in the development of an antibody-based composite CoR for reinfection with SARS-CoV-2 or development of severe COVID-19, including variation in exposure dose, transmission route, viral genetic variation, patient factors, and vaccination status. We provide an overview of antibody dynamics to aid exploration of the specifics of SARS-CoV-2 antibody testing. We further discuss anti-SARS-CoV-2 immunoassays, sample matrices, testing formats, frequency of sampling and the optimal time point for such sampling. While the development of a composite CoR is challenging, we provide our recommendations for each of these key areas and highlight areas that require further work to be undertaken.
Collapse
Affiliation(s)
- Stefan Holdenrieder
- Institute of Laboratory Medicine, German Heart Centre Munich, Technical University Munich, Munich, Germany
| | | | - Jacques Izopet
- Laboratory of Virology, Toulouse University Hospital and INFINITY Toulouse Institute for Infections and Inflammatory Diseases, INSERM UMR 1291 CNRS UMR 5051, University Toulouse III, Toulouse, France
| | - Elitza S. Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
- Faculty of Medicine, Max Von Pettenkofer Institute, LMU Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Munich, Germany
| |
Collapse
|
14
|
Bae DY, Yang JH, Moon SH, Kim WH, Yoo DS, Park CK, Shin YK, Kang HE, Tark D, Oh Y, Cho HS. Demonstration of SARS-CoV-2 Exposure in Korean Native Cattle and Korean Native Black Goats in Korea. Animals (Basel) 2023; 13:3498. [PMID: 38003116 PMCID: PMC10668742 DOI: 10.3390/ani13223498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The COVID-19 pandemic is caused by the zoonotic SARS-CoV-2 virus. A wide range of animals that interact with humans have been investigated to identify potential infections. As the extent of infection became more apparent, extensive animal monitoring became necessary to assess their susceptibility. This study analyzed nasal swabs and blood samples collected from randomly selected Korean native cattle and Korean native black goats. The tests conducted included real-time qPCR to detect SARS-CoV-2 antigens, an ELISA to detect antibodies, and a plaque reduction neutralization test (PRNT) to determine the presence of neutralizing antibodies. Among the 1798 animals tested (consisting of 1174 Korean native cattle and 624 Korean native black goats), SARS-CoV-2 viral RNA was detected in one Korean native cattle and one Korean native black goat. ELISA testing revealed positive results for antibodies in 54 Korean native cattle (4.60%) and 16 Korean native black goats (2.56%), while PRNTs yielded positive results in 51 Korean native cattle (4.34%) and 14 Korean native black goats (2.24%). The presence of SARS-CoV-2 antigens and/or antibodies was identified in animals on farms where farmworkers were already infected. It is challenging to completely rule out the possibility of reverse zoonotic transmission from humans to livestock in Korea, although the transmission is not to the same extent as it is in highly susceptible animal species like minks, cats, and dogs. This is due to the limited geographical area and the dense, intensive farming practices implemented in these regions. In conclusion, continuous viral circulation between humans and animals is inevitable, necessitating ongoing animal monitoring to ensure public health and safety.
Collapse
Affiliation(s)
- Da-Yun Bae
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (D.-Y.B.); (S.-H.M.)
| | - Ju-Hee Yang
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea; (J.-H.Y.); (D.T.)
| | - Sung-Hyun Moon
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (D.-Y.B.); (S.-H.M.)
| | - Woo H. Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Dae-Sung Yoo
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Choi-Kyu Park
- College of Veterinary Medicine, Kyungbuk National University, Daegu 41566, Republic of Korea;
| | - Yeun-Kyung Shin
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (Y.-K.S.); (H.-E.K.)
| | - Hae-Eun Kang
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (Y.-K.S.); (H.-E.K.)
| | - Dongseob Tark
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea; (J.-H.Y.); (D.T.)
| | - Yeonsu Oh
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ho-Seong Cho
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (D.-Y.B.); (S.-H.M.)
| |
Collapse
|
15
|
Rizzi M, Tonello S, Brinno C, Zecca E, Matino E, Cittone M, Rizzi E, Casciaro GF, D’Onghia D, Colangelo D, Minisini R, Bellan M, Castello LM, Chiocchetti A, Pirisi M, Rigamonti C, Lilleri D, Zavaglio F, Bergami F, Sola D, Sainaghi PP. SARS-CoV-2 infection risk is higher in vaccinated patients with inflammatory autoimmune diseases or liver transplantation treated with mycophenolate due to an impaired antiviral immune response: results of the extended follow up of the RIVALSA prospective cohort. Front Immunol 2023; 14:1185278. [PMID: 37545528 PMCID: PMC10398576 DOI: 10.3389/fimmu.2023.1185278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Background A relevant proportion of immunocompromised patients did not reach a detectable seroconversion after a full primary vaccination cycle against SARS-CoV-2. The effect of different immunosuppressants and the potential risks for SARS-CoV-2 infection in these subjects is largely unknown. Methods Patients from the Rivalsa prospective, observational cohort study with planned anti SARS-CoV-2 third dose mRNA vaccination between October and December 2021 were asked to participate to this follow-up study. Patients were asked about eventual confirmed positivity to SARS-CoV-2 infection within 6 months from the third dose and to undergo a blood draw to evaluate seroconversion status after the additional vaccine shot. Results 19 out of 114 patients taking part in the survey developed a confirmed SARS-CoV-2 infection; we identified mycophenolate treatment as an independent predictor of an increased risk of infection even after the third vaccine dose (OR: 5.20, 95% CI: 1.70-20.00, p=0.0053). This result is in agreement with the in vitro evidence that MMF impairs both B and T lymphocytes driven immune responses (reduction both in memory B cells producing anti-spike antibodies and in proliferating CD4+ and CD8+ T cells). Conclusions Immunocompromised patients need an additional vaccine administration to reach a detectable seroconversion, thus fostering a more personalized approach to their clinical management. Moreover, patients undergoing mycophenolate treatment show a specific increased infection risk, with respect to other immunosuppressants thus supporting a closer monitoring of their health status.
Collapse
Affiliation(s)
- Manuela Rizzi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, and IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), Novara, Italy
| | - Cristiana Brinno
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Erika Zecca
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Novara, Italy
- Division of Emergency Medicine and COVID-19 sub-intensive unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Erica Matino
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Novara, Italy
- Division of Emergency Medicine and COVID-19 sub-intensive unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Micol Cittone
- Internal Medicine and Rheumatology Unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Eleonora Rizzi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Novara, Italy
- Division of Emergency Medicine and COVID-19 sub-intensive unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Giuseppe Francesco Casciaro
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Novara, Italy
- Division of Emergency Medicine and COVID-19 sub-intensive unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Davide D’Onghia
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Donato Colangelo
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, and IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Novara, Italy
- Division of Emergency Medicine and COVID-19 sub-intensive unit, AOU “Maggiore della Carità”, Novara, Italy
- Internal Medicine and Rheumatology Unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Luigi Mario Castello
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Division of Internal Medicine, Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, Alessandria, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, and IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, and IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Novara, Italy
- Division of Emergency Medicine and COVID-19 sub-intensive unit, AOU “Maggiore della Carità”, Novara, Italy
- Internal Medicine and Rheumatology Unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Cristina Rigamonti
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Internal Medicine and Rheumatology Unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Daniele Lilleri
- Unit of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Zavaglio
- Unit of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Bergami
- Unit of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniele Sola
- Internal Medicine and Rheumatology Unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, and IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Novara, Italy
- Division of Emergency Medicine and COVID-19 sub-intensive unit, AOU “Maggiore della Carità”, Novara, Italy
- Internal Medicine and Rheumatology Unit, AOU “Maggiore della Carità”, Novara, Italy
| |
Collapse
|
16
|
Sendi P, Widmer N, Branca M, Thierstein M, Büchi AE, Güntensperger D, Blum MR, Baldan R, Tinguely C, Heg D, Theel ES, Berbari E, Tande AJ, Endimiani A, Gowland P, Niederhauser C. Do quantitative levels of antispike-IgG antibodies aid in predicting protection from SARS-CoV-2 infection? Results from a longitudinal study in a police cohort. J Med Virol 2023; 95:e28904. [PMID: 37386901 DOI: 10.1002/jmv.28904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/04/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023]
Abstract
In a COVID-19 sero-surveillance cohort study with predominantly healthy and vaccinated individuals, the objectives were (i) to investigate longitudinally the factors associated with the quantitative dynamics of antispike (anti-S1) IgG antibody levels, (ii) to evaluate whether the levels were associated with protection from SARS-CoV-2 infection, and (iii) to assess whether the association was different in the pre-Omicron compared with the Omicron period. The QuantiVac Euroimmun ELISA test was used to quantify anti-S1 IgG levels. The entire study period (16 months), the 11-month pre-Omicron period and the cross-sectional analysis before the Omicron surge included 3219, 2310, and 895 reactive serum samples from 949, 919, and 895 individuals, respectively. Mixed-effect linear, mixed-effect time-to-event, and logistic regression models were used to achieve the objectives. Age and time since infection or vaccination were the only factors associated with a decline of anti-S1 IgG levels. Higher antibody levels were significantly associated with protection from SARS-CoV-2 infection (0.89, 95% confidence interval [CI] 0.82-0.97), and the association was higher during the time period when Omicron was predominantly circulating compared with the ones when Alpha and Delta variants were predominant (adjusted hazard ratio for interaction 0.66, 95% CI 0.53-0.84). In a prediction model, it was estimated that >8000 BAU/mL anti-S1 IgG was required to reduce the risk of infection with Omicron variants by approximately 20%-30% for 90 days. Though, such high levels were only found in 1.9% of the samples before the Omicron surge, and they were not durable for 3 months. Anti-S1 IgG antibody levels are statistically associated with protection from SARS-CoV-2 infection. However, the prediction impact of the antibody level findings on infection protection is limited.
Collapse
Affiliation(s)
- Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Nadja Widmer
- Interregional Blood Transfusion Swiss Red Cross, Bern, Switzerland
| | | | - Marc Thierstein
- Division Operations, Cantonal Police Bern, Bern, Switzerland
| | - Annina Elisabeth Büchi
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Manuel Raphael Blum
- Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Rossella Baldan
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Dik Heg
- CTU Bern, University of Bern, Bern, Switzerland
| | - Elitza S Theel
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elie Berbari
- Division of Public Health, Infectious Diseases, and Occupational Medicine Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron J Tande
- Division of Public Health, Infectious Diseases, and Occupational Medicine Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Peter Gowland
- Interregional Blood Transfusion Swiss Red Cross, Bern, Switzerland
| | - Christoph Niederhauser
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Interregional Blood Transfusion Swiss Red Cross, Bern, Switzerland
| |
Collapse
|
17
|
Dulipsingh L, Schaefer EJ, Wakefield D, Williams K, Halilovic A, Crowell R. Comparing SARS-CoV-2 neutralizing antibody levels in convalescent unvaccinated, convalescent vaccinated, and naive vaccinated subjects. Heliyon 2023; 9:e17410. [PMID: 37366522 PMCID: PMC10276490 DOI: 10.1016/j.heliyon.2023.e17410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/18/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 and spread rapidly. The purpose of this study was to compare neutralizing antibodies (NAbs) following the original booster vaccine in convalescent and naive vaccinated individuals and in a third comparison group consisting of unvaccinated convalescent plasma donors. Methods We assessed NAbs before and 2 months after a booster vaccine in 68 adults who had completed the initial vaccine series for SARS-CoV-2. Of these subjects, 58 had no history of prior infection (naïve vaccinated group) and 10 had been infected with SARS-COV-2 prior to the completing the first vaccine series (convalescent vaccinated group). A third comparison group included unvaccinated convalescent plasma donors (n = 55) from an earlier study with NAbs assessed approximately 2 months after a positive test for SARS-CoV-2. Results Prior to the booster, convalescent vaccinated subjects had higher NAbs compared to naive vaccinated subjects (p = 0.02). Two months following the booster, NAbs increased in both vaccinated groups. The naive vaccinated group increased more than the convalescent vaccinated group (p = 0.02). NAbs in the naive vaccinated group were almost four times higher than NAbs in the 55 unvaccinated subjects, while the convalescent vaccinated group had levels 2.5 times higher p < 0.01. Conclusion NAbs in both vaccinated/boosted groups were significantly higher than in the convalescent unvaccinated group (p < 0.01). Our data indicates that subjects with a single infection with SARS-CoV-2 did not have the same levels of neutralizing antibodies that we observed in subjects who were either in the convalescent vaccinated or the naive vaccinated groups.
Collapse
Affiliation(s)
- Latha Dulipsingh
- Saint Francis Hospital and Medical Center, 114 Woodland St., Hartford, CT, USA 06105
| | - Ernst J Schaefer
- Boston Heart Diagnostics, 200 Crossing Boulevard, Framingham, MA, USA, 01702
| | - Dorothy Wakefield
- Saint Francis Hospital and Medical Center, 114 Woodland St., Hartford, CT, USA 06105
| | - Kendra Williams
- Saint Francis Hospital and Medical Center, 114 Woodland St., Hartford, CT, USA 06105
| | - Adis Halilovic
- Saint Francis Hospital and Medical Center, 114 Woodland St., Hartford, CT, USA 06105
| | - Rebecca Crowell
- Saint Francis Hospital and Medical Center, 114 Woodland St., Hartford, CT, USA 06105
| |
Collapse
|
18
|
García-Carreras B, Hitchings MDT, Johansson MA, Biggerstaff M, Slayton RB, Healy JM, Lessler J, Quandelacy T, Salje H, Huang AT, Cummings DAT. Accounting for assay performance when estimating the temporal dynamics in SARS-CoV-2 seroprevalence in the U.S. Nat Commun 2023; 14:2235. [PMID: 37076502 PMCID: PMC10115837 DOI: 10.1038/s41467-023-37944-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
Reconstructing the incidence of SARS-CoV-2 infection is central to understanding the state of the pandemic. Seroprevalence studies are often used to assess cumulative infections as they can identify asymptomatic infection. Since July 2020, commercial laboratories have conducted nationwide serosurveys for the U.S. CDC. They employed three assays, with different sensitivities and specificities, potentially introducing biases in seroprevalence estimates. Using models, we show that accounting for assays explains some of the observed state-to-state variation in seroprevalence, and when integrating case and death surveillance data, we show that when using the Abbott assay, estimates of proportions infected can differ substantially from seroprevalence estimates. We also found that states with higher proportions infected (before or after vaccination) had lower vaccination coverages, a pattern corroborated using a separate dataset. Finally, to understand vaccination rates relative to the increase in cases, we estimated the proportions of the population that received a vaccine prior to infection.
Collapse
Affiliation(s)
- Bernardo García-Carreras
- Department of Biology, University of Florida, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| | - Matt D T Hitchings
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Michael A Johansson
- COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Matthew Biggerstaff
- COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rachel B Slayton
- COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica M Healy
- COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Justin Lessler
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Carolina Population Center, Chapel Hill, NC, USA
| | | | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Angkana T Huang
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Derek A T Cummings
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Puccini L, Fantini M, Biagetti C, Angelini R, Dirani G, Grumiro L, Schiavone P, Sparacino M, Semprini S, Sambri V, Cricca M. Kinetics of dried blood spot-measured anti-SARS-CoV2 Spike IgG in mRNA-vaccinated healthcare workers. Front Microbiol 2023; 14:1130677. [PMID: 36937271 PMCID: PMC10014594 DOI: 10.3389/fmicb.2023.1130677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction One of the major criticisms facing the research community during SARS-CoV2 pandemic was the lack of large-scale, longitudinal data on the efficacy of the SARS-CoV2 mRNA vaccines. Currently, even if COVID-19 antiviral treatments have been authorized by European Medicine Agency, prevention through approved specific vaccines is the best approach available in order to contain the ongoing pandemic. Objectives Here, we studied the antibody kinetic over a one-year period from vaccination with the Pfizer-BioNTech (Pfizer) vaccines and subsequent boosting with either the BioNTech or Moderna (Spikevax) vaccines in a large cohort of 8,071 healthcare workers (HCW). We also described the impact of SARS-CoV2 infection on antibody kinetic over the same period. Methods We assessed the anti SARS-CoV2 Spike IgG antibody kinetic by the high throughput dried blood spot (DBS) collection method and the GSP®/DELFIA® Anti-SARS-CoV2 IgG assay (PerkinElmer®). Results Our data support existing models showing that SARS-CoV2 vaccination elicits strong initial antibodies responses that decline with time but are transitorily increased by administering a vaccine booster. We also showed that using heterologous vaccine/booster combinations a stronger antibody response was elicited than utilizing a booster from the same vaccine manufacturer. Furthermore, by considering the impact of SARS-CoV2 infection occurrence in proximity to the scheduled booster administration, we confirmed that booster dose did not contribute significantly to elicit higher antibody responses. Conclusion DBS sampling in our large population of HCWs was fundamental to collect a large number of specimens and to clarify the effective mRNA vaccine-induced antibody kinetic and the role of both heterologous boosters and SARS-CoV2 infection in modulating antibody responses.
Collapse
Affiliation(s)
- Lucrezia Puccini
- Operative Unit of Microbiology, The Great Romagna Hub Laboratory, Pievesestina, Italy
| | - Michela Fantini
- Health Services Research, Evaluation and Policy Unit, AUSL Romagna, Rimini, Italy
| | - Carlo Biagetti
- Operative Unit of Infectious Disease, Ospedale Infermi, Rimini, Italy
| | | | - Giorgio Dirani
- Operative Unit of Microbiology, The Great Romagna Hub Laboratory, Pievesestina, Italy
| | - Laura Grumiro
- Operative Unit of Microbiology, The Great Romagna Hub Laboratory, Pievesestina, Italy
| | - Pasqua Schiavone
- Operative Unit of Microbiology, The Great Romagna Hub Laboratory, Pievesestina, Italy
| | - Monica Sparacino
- Operative Unit of Microbiology, The Great Romagna Hub Laboratory, Pievesestina, Italy
| | - Simona Semprini
- Operative Unit of Microbiology, The Great Romagna Hub Laboratory, Pievesestina, Italy
| | - Vittorio Sambri
- Operative Unit of Microbiology, The Great Romagna Hub Laboratory, Pievesestina, Italy
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| | - Monica Cricca
- Operative Unit of Microbiology, The Great Romagna Hub Laboratory, Pievesestina, Italy
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Graninger M, Jani CM, Reuberger E, Prüger K, Gaspar P, Springer DN, Borsodi C, Weidner L, Rabady S, Puchhammer-Stöckl E, Jungbauer C, Höltl E, Aberle JH, Stiasny K, Weseslindtner L. Comprehensive Comparison of Seven SARS-CoV-2-Specific Surrogate Virus Neutralization and Anti-Spike IgG Antibody Assays Using a Live-Virus Neutralization Assay as a Reference. Microbiol Spectr 2023; 11:e0231422. [PMID: 36622205 PMCID: PMC9927416 DOI: 10.1128/spectrum.02314-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neutralizing antibodies (nAbs) are considered a valuable marker for measuring humoral immunity against SARS-CoV-2. However, live-virus neutralization tests (NTs) require high-biosafety-level laboratories and are time-consuming. Therefore, surrogate virus neutralization tests (sVNTs) have been widely applied, but unlike most anti-spike (S) antibody assays, NTs and sVNTs are not harmonized, requiring further evaluation and comparative analyses. This study compared seven commercial sVNTs and anti-S-antibody assays with a live-virus NT as a reference, using a panel of 720 single and longitudinal serum samples from 666 convalescent patients after SARS-CoV-2 infection. The sensitivity of these assays for detecting antibodies ranged from 48 to 94% after PCR-confirmed infection and from 56% to 100% relative to positivity in the in-house live-virus NT. Furthermore, we performed receiver operating characteristic (ROC) curve analyses to determine which immunoassays were most suitable for assessing nAb titers exceeding a specific cutoff (NT titer, ≥80) and found that the NeutraLISA and the cPass assays reached the highest area under the curve (AUC), exceeding 0.91. In addition, when the assays were compared for their correlation with nAb kinetics over time in a set of longitudinal samples, the extent of the measured decrease of nAbs after infection varied widely among the evaluated immunoassays. Finally, in vaccinated convalescent patients, high titers of nAbs exceeded the upper limit of the evaluated assays' quantification ranges. Based on data from this study, we conclude that commercial immunoassays are acceptable substitutes for live-virus NTs, particularly when additional adapted cutoffs are employed to detect nAbs beyond a specific threshold titer. IMPORTANCE While the measurement of neutralizing antibodies is considered a valuable tool in assessing protection against SARS-CoV-2, neutralization tests employ live-virus isolates and cell culture, requiring advanced laboratory biosafety levels. Including a large sample panel (over 700 samples), this study provides adapted cutoff values calculated for seven commercial immunoassays (including four surrogate neutralization assays and a protein-based microarray) that robustly correlate with specific titers of neutralizing antibodies.
Collapse
Affiliation(s)
| | | | | | - Katja Prüger
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Philipp Gaspar
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | | | - Lisa Weidner
- Austrian Red Cross, Blood Service for Vienna, Lower Austria, and Burgenland, Vienna, Austria
| | - Susanne Rabady
- Karl Landsteiner University of Health Sciences, Department of General Health Studies, Division General and Family Medicine, Krems, Austria
| | | | - Christof Jungbauer
- Austrian Red Cross, Blood Service for Vienna, Lower Austria, and Burgenland, Vienna, Austria
| | - Eva Höltl
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | | | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
21
|
Migueres M, Chapuy‐Regaud S, Miédougé M, Jamme T, Lougarre C, Da Silva I, Pucelle M, Staes L, Porcheron M, Diméglio C, Izopet J. Current immunoassays and detection of antibodies elicited by Omicron SARS-CoV-2 infection. J Med Virol 2023; 95:e28200. [PMID: 36207814 PMCID: PMC9874650 DOI: 10.1002/jmv.28200] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 01/27/2023]
Abstract
The present study aimed to determine whether current commercial immunoassays are adequate for detecting anti-Omicron antibodies. We analyzed the anti-SARS-CoV-2 antibody response of 23 unvaccinated individuals 1-2 months after an Omicron infection. All blood samples were tested with a live virus neutralization assay using a clinical Omicron BA.1 strain and four commercial SARS-CoV-2 immunoassays. We assessed three anti-Spike immunoassays (SARS-CoV-2 IgG II Quant [Abbott S], Wantaï anti-SARS-CoV-2 antibody ELISA [Wantaï], Elecsys Anti-SARS-CoV-2 S assay [Roche]) and one anti-Nucleocapsid immunoassay (Abbott SARS-CoV-2 IgG assay [Abbott N]). Omicron neutralizing antibodies were detected in all samples with the live virus neutralization assay. The detection rate of the Abbott S, Wantai, Roche, and Abbott N immunoassays were 65.2%, 69.6%, 86.9%, and 91.3%, respectively. The sensitivities of Abbott S and Wantai immunoassays were significantly lower than that of the live virus neutralization assay (p = 0.004, p = 0.009; Fisher's exact test). Antibody concentrations obtained with anti-S immunoassays were correlated with Omicron neutralizing antibody concentrations. These data provide clinical evidence of the loss of performance of some commercial immunoassays to detect antibodies elicited by Omicron infections. It highlights the need to optimize these assays by adapting antigens to the circulating SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Marion Migueres
- Laboratoire de Virologie, CHU Toulouse, Hôpital PurpanInstitut Fédératif de BiologieToulouseFrance,Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291 ‐ CNRS UMR5051ToulouseFrance,Université Toulouse III Paul‐SabatierToulouseFrance
| | - Sabine Chapuy‐Regaud
- Laboratoire de Virologie, CHU Toulouse, Hôpital PurpanInstitut Fédératif de BiologieToulouseFrance,Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291 ‐ CNRS UMR5051ToulouseFrance,Université Toulouse III Paul‐SabatierToulouseFrance
| | - Marcel Miédougé
- Laboratoire de Virologie, CHU Toulouse, Hôpital PurpanInstitut Fédératif de BiologieToulouseFrance
| | - Thibaut Jamme
- Laboratoire de Biochimie, CHU Toulouse, Hôpital PurpanInstitut Fédératif de BiologieToulouseFrance
| | | | - Isabelle Da Silva
- Laboratoire de Virologie, CHU Toulouse, Hôpital PurpanInstitut Fédératif de BiologieToulouseFrance
| | - Mélanie Pucelle
- Laboratoire de Virologie, CHU Toulouse, Hôpital PurpanInstitut Fédératif de BiologieToulouseFrance
| | - Laetitia Staes
- Laboratoire de Virologie, CHU Toulouse, Hôpital PurpanInstitut Fédératif de BiologieToulouseFrance
| | - Marion Porcheron
- Laboratoire de Virologie, CHU Toulouse, Hôpital PurpanInstitut Fédératif de BiologieToulouseFrance
| | - Chloé Diméglio
- Laboratoire de Virologie, CHU Toulouse, Hôpital PurpanInstitut Fédératif de BiologieToulouseFrance,Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291 ‐ CNRS UMR5051ToulouseFrance,Université Toulouse III Paul‐SabatierToulouseFrance
| | - Jacques Izopet
- Laboratoire de Virologie, CHU Toulouse, Hôpital PurpanInstitut Fédératif de BiologieToulouseFrance,Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291 ‐ CNRS UMR5051ToulouseFrance,Université Toulouse III Paul‐SabatierToulouseFrance
| |
Collapse
|
22
|
El-Ghitany EM, Hashish MH, Farghaly AG, Omran EA. Determining the SARS-CoV-2 Anti-Spike Cutoff Level Denoting Neutralizing Activity Using Two Commercial Kits. Vaccines (Basel) 2022; 10:1952. [PMID: 36423048 PMCID: PMC9699632 DOI: 10.3390/vaccines10111952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The viral neutralization assay is the gold standard to estimate the level of immunity against SARS-CoV-2. This study analyzes the correlation between the quantitative Anti-SARS-CoV-2 QuantiVac ELISA (IgG) and the NeutraLISA neutralization assay. METHODS 650 serum samples were tested for both SARS-CoV-2 anti-spike (anti-S) immunoglobulin G (IgG) and neutralizing antibodies (nAbs) using kits by EUROIMMUN, Germany. RESULTS There was a significant correlation between levels of anti-S and nAbs (Spearman's rho = 0.913). Among the positive samples for anti-S, 77.0% (n = 345) were positive for nAbs. There was a substantial agreement between anti-S and nAbs (Cohen's kappa coefficient = 0.658; agreement of 83.38%). Considering NeutraLISA as a gold standard, anti-S had a sensitivity of 98.57%, specificity of 65.66%, NPV of 97.5%, and PPV of 77.0%. When the anti-S titer was greater than 18.1 RU/mL (57.9 BAU/mL), nAbs were positive, with a sensitivity of 90.0% and specificity of 91%. CONCLUSIONS A titer of SARS-CoV-2 anti-S IgG can be correlated with levels of nAbs.
Collapse
Affiliation(s)
- Engy Mohamed El-Ghitany
- Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt
| | - Mona H. Hashish
- Department of Microbiology, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt
| | - Azza Galal Farghaly
- Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt
| | - Eman A. Omran
- Department of Microbiology, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt
| |
Collapse
|
23
|
Springer DN, Perkmann T, Jani CM, Mucher P, Prüger K, Marculescu R, Reuberger E, Camp JV, Graninger M, Borsodi C, Deutsch J, Lammel O, Aberle SW, Puchhammer-Stöckl E, Haslacher H, Höltl E, Aberle JH, Stiasny K, Weseslindtner L. Reduced Sensitivity of Commercial Spike-Specific Antibody Assays after Primary Infection with the SARS-CoV-2 Omicron Variant. Microbiol Spectr 2022; 10:e0212922. [PMID: 36005839 PMCID: PMC9603218 DOI: 10.1128/spectrum.02129-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/31/2022] [Indexed: 12/31/2022] Open
Abstract
The SARS-CoV-2 Omicron variant is characterized by substantial changes in the antigenic structure of the Spike (S) protein. Therefore, antibodies induced by primary Omicron infection lack neutralizing activity against earlier variants. In this study, we analyzed whether these antigenic changes impact the sensitivity of commercial anti-SARS-CoV-2 antibody assays. Sera from 37 unvaccinated, convalescent individuals after putative primary Omicron infection were tested with a panel of 20 commercial anti-SARS-CoV-2 immunoassays. As controls, we used samples from 43 individuals after primary infection with the SARS-CoV-2 ancestral wild-type strain. In addition, variant-specific live-virus neutralization assays were used as a reference for the presence of SARS-CoV-2-specific antibodies in the samples. Notably, in Omicron convalescents, there was a statistically significant reduction in the sensitivity of all antibody assays containing S or its receptor-binding-domain (RBD) as antigens. Furthermore, antibody levels quantified by these assays displayed a weaker correlation with Omicron-specific neutralizing antibody titers than with those against the wild type. In contrast, the sensitivity of nucleocapsid-protein-specific immunoassays was similar in wild-type and Omicron-infected subjects. In summary, the antigenic changes in the Omicron S lead to reduced immunoreactivity in the current commercial S- and RBD-specific antibody assays, impairing their diagnostic performance. IMPORTANCE This study demonstrates that the antigenic changes of the SARS-CoV-2 Omicron variant affect test results from commercial Spike- and RBD-specific antibody assays, significantly diminishing their sensitivities and diagnostic abilities to assess neutralizing antibodies.
Collapse
Affiliation(s)
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Patrick Mucher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Katja Prüger
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Jeremy Vann Camp
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Eva Höltl
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | | | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
24
|
Błaszczuk A, Michalski A, Sikora D, Malm M, Drop B, Polz-Dacewicz M. Antibody Response after SARS-CoV-2 Infection with the Delta and Omicron Variant. Vaccines (Basel) 2022; 10:vaccines10101728. [PMID: 36298593 PMCID: PMC9612121 DOI: 10.3390/vaccines10101728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
The SARS-CoV-2 virus caused a worldwide COVID-19 pandemic. So far, 6,120,834 confirmed cases of COVID-19 with 116,773 deaths have been reported in Poland. According to WHO, a total of 54,662,485 vaccine doses have been administered. New variants emerge that become dominant. The aim of this study was a comparison of antibody level after infection caused by Delta and Omicron variants. The study included 203 persons who underwent mild COVID-19 despite two doses of vaccine. The obtained results indicate that a significantly lower titer was observed in patients with the Omicron variant infection. Therefore, these patients may be at risk of reinfection with new strains of the Omicron variant. Due to the possibility of reinfection, booster vaccinations are necessary. Further epidemiological and clinical studies are necessary to develop new prevention strategies.
Collapse
Affiliation(s)
- Agata Błaszczuk
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| | - Aleksander Michalski
- 1st Clinical Military Hospital with Outpatient Clinic in Lublin, 20-049 Lublin, Poland
| | - Dominika Sikora
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| | - Maria Malm
- Department of Computer Science and Medical Statistics with the e-Health Laboratory, 20-090 Lublin, Poland
| | - Bartłomiej Drop
- Department of Computer Science and Medical Statistics with the e-Health Laboratory, 20-090 Lublin, Poland
| | - Małgorzata Polz-Dacewicz
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
25
|
Gupta SL, Jaiswal RK. Relevant of neutralizing antibody during SARS-CoV-2 infection and their therapeutic usage. Mol Biol Rep 2022; 49:10137-10140. [PMID: 35596816 PMCID: PMC9123622 DOI: 10.1007/s11033-022-07493-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Affiliation(s)
| | - Rishi K Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
26
|
Poniedziałek B, Hallmann E, Sikora D, Szymański K, Kondratiuk K, Żurawski J, Rzymski P, Brydak L. Relationship between Humoral Response in COVID-19 and Seasonal Influenza Vaccination. Vaccines (Basel) 2022; 10:1621. [PMID: 36298486 PMCID: PMC9610939 DOI: 10.3390/vaccines10101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
There is evidence that vaccination against seasonal influenza can improve innate immune responses to COVID-19 and decrease disease severity. However, less is known about whether it could also impact the humoral immunity in SARS-CoV-2 infected patients. The present study aimed to compare the SARS-CoV-2 specific humoral responses (IgG antibodies against nucleocapsid; anti-N, receptor binding domain; anti-RBD, subunit S2; anti-S2, and envelope protein; anti-E) between non-hospitalized, COVID-19 unvaccinated, and mild COVID-19 convalescent patients who were and were not vaccinated against influenza during the 2019/2020 epidemic season (n = 489 and n = 292, respectively). The influenza-vaccinated group had significantly higher frequency and titers of anti-N antibodies (75 vs. 66%; mean 559 vs. 520 U/mL) and anti-RBD antibodies (85 vs. 76%; mean 580 vs. 540 U/mL). The prevalence and concentrations of anti-S2 and anti-E antibodies did not differ between groups (40-43%; mean 370-375 U/mL and 1.4-1.7%; mean 261-294 U/mL) and were significantly lower compared to those of anti-RBD and anti-N. In both groups, age, comorbidities, and gender did not affect the prevalence and concentrations of studied antibodies. The results indicate that influenza vaccination can improve serum antibody levels produced in response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Barbara Poniedziałek
- Department of Environmental Medicine, Poznań University of Medical Sciences, 60-806 Poznan, Poland
| | - Ewelina Hallmann
- Department of Influenza Research, National Influenza Center at the National Institute of Public Health NIH—National Research Institute in Warsaw, Chocimska St. 24, 00-791 Warsaw, Poland
| | - Dominika Sikora
- Department of Environmental Medicine, Poznań University of Medical Sciences, 60-806 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Fredry St. 10, 61-701 Poznan, Poland
| | - Karol Szymański
- Department of Influenza Research, National Influenza Center at the National Institute of Public Health NIH—National Research Institute in Warsaw, Chocimska St. 24, 00-791 Warsaw, Poland
| | - Katarzyna Kondratiuk
- Department of Influenza Research, National Influenza Center at the National Institute of Public Health NIH—National Research Institute in Warsaw, Chocimska St. 24, 00-791 Warsaw, Poland
| | - Jakub Żurawski
- Department of Immunobiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznań University of Medical Sciences, 60-806 Poznan, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznan, Poland
| | - Lidia Brydak
- Department of Influenza Research, National Influenza Center at the National Institute of Public Health NIH—National Research Institute in Warsaw, Chocimska St. 24, 00-791 Warsaw, Poland
| |
Collapse
|
27
|
Ongoing Mycophenolate Treatment Impairs Anti-SARS-CoV-2 Vaccination Response in Patients Affected by Chronic Inflammatory Autoimmune Diseases or Liver Transplantation Recipients: Results of the RIVALSA Prospective Cohort. Viruses 2022; 14:v14081766. [PMID: 36016388 PMCID: PMC9413351 DOI: 10.3390/v14081766] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccines are the most effective means to prevent the potentially deadly effects of SARS-CoV-2 infection, but not all vaccinated individuals gain the same degree of protection. Patients undergoing chronic immunosuppressive therapy due to autoimmune diseases or liver transplants, for example, may show impaired anti-SARS-CoV-2 antibody response after vaccination. We performed a prospective observational study with parallel arms, aiming to (a) evaluate seroconversion after anti-SARS-CoV-2 mRNA vaccine administration in different subgroups of patients receiving immunosuppressive treatment for rheumatological or autoimmune diseases or to prevent organ rejection after liver transplantation and (b) identify negative predictors of IgG anti-SARS-CoV-2 development. Out of 437 eligible patients, 183 individuals were enrolled at the Rheumatology and Hepatology Tertiary Units of “Maggiore della Carità” University Hospital in Novara: of those, 52 were healthy subjects, while among the remaining 131 patients, 30 had a diagnosis of spondyloarthritis, 25 had autoimmune hepatitis, 10 were liver transplantation recipients, 23 suffered from connective tissue diseases (including 10 cases that overlapped with other diseases), 40 were treated for rheumatoid arthritis, and 5 had vasculitis. Moreover, all patients were receiving chronic immunosuppressive therapy. The immunogenicity of mRNA COVID-19 vaccines was evaluated by measuring IgG anti-SARS-CoV-2 antibody titers before vaccination and after 10, 30, and 90 days since the first dose administration. Of the selected cohort of patients, 24.0% did not develop any detectable anti-SARS-CoV-2 IgG after a complete mRNA-based two doses primary vaccination cycle. At univariate analysis, independent predictors of an absent antibody response to vaccine were a history of liver transplantation (OR 11.5, 95% CI 2.5−53.7, p = 0.0018), the presence of a comorbid active neoplasia (OR 26.4, 95% CI 2.8−252.4, p = 0.0045), and an ongoing immunosuppressive treatment with mycophenolate (MMF) (OR 14.0, 95% CI 3.6−54.9, p = 0.0002) or with calcineurin inhibitors (OR 17.5, 95% CI 3.1−99.0, p = 0.0012). At multivariate analysis, only treatment with MMF (OR 24.8, 95% CI 5.9−103.2, p < 0.0001) and active neoplasia (OR 33.2, 95% CI 5.4−204.1, p = 0.0002) were independent predictors of seroconversion failure. These findings suggest that MMF dose reduction or suspension may be required to optimize vaccine response in these patients.
Collapse
|
28
|
Antibodies to NCP, RBD and S2 SARS-CoV-2 in Vaccinated and Unvaccinated Healthcare Workers. Vaccines (Basel) 2022; 10:vaccines10081169. [PMID: 35893818 PMCID: PMC9329710 DOI: 10.3390/vaccines10081169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
In a few months, the SARS-CoV-2 virus caused a worldwide COVID-19 pandemic. In Poland, 6 million cases of the disease and 113,000 deaths from COVID-19 have been reported. Healthcare workers (HCWs) constitute one of the main COVID-19 risk groups. The Microblot-Array COVID-19 IgG assay was used to detect antibodies against three major SARS-CoV-2 antigens: nucleocapsid (NCP), RBD, and Spike 2 (S2). The aim of our study was to determine the seroprevalence and titer of anti-SARS-CoV-2 IgG antibodies—NCP, RBD, and S2—as markers of the humoral response in vaccinated and unvaccinated HCWs. The study included 203 persons who were divided into four groups: “COVID-19 Vaccinated”, “COVID-19 Unvaccinated”, “Non-COVID-19 Vaccinated”, and “Non-COVID-19 Unvaccinated”. The obtained results indicate that both seroprevalence and the antibody titer are the highest in the “COVID-19 Vaccinated” group. There is no so-called sterile vaccination, and after 6 months from the second dose of vaccine, most vaccinated people have a fairly high level of antibodies. We suggest that multiple vaccination and continuous testing are necessary. The Microblot-Array assay can distinguish between antibodies acquired after infection and/or vaccination.
Collapse
|
29
|
Ma J, Cheng ZJ, Xue M, Huang H, Li S, Fang Y, Zeng Y, Lin R, Liang Z, Liang H, Deng Y, Cheng Y, Huang S, Wang Q, Niu X, Li S, Zheng P, Sun B. Investigation of Antibody Levels During Three Doses of Sinopharm/BBIBP Vaccine Inoculation. Front Immunol 2022; 13:913732. [PMID: 35812449 PMCID: PMC9256989 DOI: 10.3389/fimmu.2022.913732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Levels of neutralizing antibodies (NAb) after vaccine against coronavirus disease 2019 (COVID-19) can be detected using a variety of methods. A critical challenge is how to apply simple and accurate methods to assess vaccine effect. In a population inoculated with three doses of the inactivated Sinopharm/BBIBP vaccine, we assessed the performance of chemiluminescent immunoassay (CLIA) in its implementation to detect severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) specific antibodies, as well as the antibody kinetics of healthcare workers throughout the course of vaccination. The antibody levels of NAb, the receptor-binding-domain (RBD) antibodies and IgG peaked one month after the second and remained at a relatively high level for over three months after the booster injection, while IgM and IgA levels remained consistently low throughout the course of vaccination. The production of high-level neutralizing antibodies is more likely when the inoculation interval between the first two doses is within the range of one to two months, and that between the first and booster dose is within 230 days. CLIA showed excellent consistency and correlation between NAb, RBD, and IgG antibodies with the cytopathic effect (CPE) conventional virus neutralization test (VNT). Receiver operating characteristic (ROC) analysis revealed that the optimal cut-off levels of NAb, RBD and IgG were 61.77 AU/ml, 37.86 AU/ml and 4.64 AU/ml, with sensitivity of 0.833, 0.796 and 0.944, and specificity of 0.768, 0.750 and 0.625, respectively, which can be utilized as reliable indicators of COVID-19 vaccination immunity detection.
Collapse
Affiliation(s)
- Jing Ma
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhangkai J. Cheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingshan Xue
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huimin Huang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyun Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanting Fang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifeng Zeng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Runpei Lin
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiman Liang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Liang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yijun Deng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyi Cheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuangshuang Huang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Wang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuefeng Niu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Baoqing Sun, ; Peiyan Zheng, ; Siping Li, ; Xuefeng Niu,
| | - Siping Li
- Clinical Laboratory, Dongguan Eighth People’s Hospital, Dongguan, China
- *Correspondence: Baoqing Sun, ; Peiyan Zheng, ; Siping Li, ; Xuefeng Niu,
| | - Peiyan Zheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Baoqing Sun, ; Peiyan Zheng, ; Siping Li, ; Xuefeng Niu,
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Baoqing Sun, ; Peiyan Zheng, ; Siping Li, ; Xuefeng Niu,
| |
Collapse
|
30
|
Yang LM, Costales C, Ramanathan M, Bulterys PL, Murugesan K, Schroers-Martin J, Alizadeh AA, Boyd SD, Brown JM, Nadeau KC, Nadimpalli SS, Wang AX, Busque S, Pinsky BA, Banaei N. Cellular and humoral immune response to SARS-CoV-2 vaccination and booster dose in immunosuppressed patients: An observational cohort study. J Clin Virol 2022; 153:105217. [PMID: 35714462 PMCID: PMC9188451 DOI: 10.1016/j.jcv.2022.105217] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 10/29/2022]
Abstract
BACKGROUND Humoral and cellular immune responses to SARS-CoV-2 vaccination among immunosuppressed patients remain poorly defined, as well as variables associated with poor response. METHODS We performed a retrospective observational cohort study at a large Northern California healthcare system of infection-naïve individuals fully vaccinated against SARS-CoV-2 (mRNA-1273, BNT162b2, or Ad26.COV2.S) with clinical SARS-CoV-2 interferon gamma release assay (IGRA) ordered between January through November 2021. Humoral and cellular immune responses were measured by anti-SARS-CoV-2 S1 IgG ELISA (anti-S1 IgG) and IGRA, respectively, following primary and/or booster vaccination. RESULTS 496 immunosuppressed patients (54% female; median age 50 years) were included. 62% (261/419) of patients had positive anti-S1 IgG and 71% (277/389) had positive IGRA after primary vaccination, with 20% of patients having a positive IGRA only. Following booster, 69% (81/118) had positive anti-S1 IgG and 73% (91/124) had positive IGRA. Factors associated with low humoral response rates after primary vaccination included anti-CD20 monoclonal antibodies (P < 0.001), sphingosine 1-phsophate (S1P) receptor modulators (P < 0.001), mycophenolate (P = 0.002), and B cell lymphoma (P = 0.004); those associated with low cellular response rates included S1P receptor modulators (P < 0.001) and mycophenolate (P < 0.001). Of patients who had poor humoral response to primary vaccination, 35% (18/52) developed a significantly higher response after the booster. Only 5% (2/42) of patients developed a significantly higher cellular response to the booster dose compared to primary vaccination. CONCLUSIONS Humoral and cellular response rates to primary and booster SARS-CoV-2 vaccination differ among immunosuppressed patient groups. Clinical testing of cellular immunity is important in monitoring vaccine response in vulnerable populations.
Collapse
Affiliation(s)
- Lu M Yang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 United States of America
| | - Cristina Costales
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 United States of America
| | - Muthukumar Ramanathan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 United States of America
| | - Philip L Bulterys
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 United States of America
| | - Kanagavel Murugesan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 United States of America
| | - Joseph Schroers-Martin
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305 United States of America
| | - Ash A Alizadeh
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305 United States of America
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 United States of America; Sean N. Parker Center for Allergy & Asthma Research, Stanford, CA 94305 United States of America
| | - Janice M Brown
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305 United States of America
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy & Asthma Research, Stanford, CA 94305 United States of America; Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305 United States of America
| | - Sruti S Nadimpalli
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Stanford University School of Medicine, Stanford CA 94305 United States of America
| | - Aileen X Wang
- Department of Medicine, Division of Nephrology, Stanford University School of Medicine, Stanford, CA 94305 United States of America
| | - Stephan Busque
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305 United States of America
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 United States of America; Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305 United States of America
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 United States of America; Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305 United States of America; Clinical Microbiology Laboratory, Stanford Health Care, Palo Alto, CA 94304 United States of America.
| |
Collapse
|
31
|
Fiorito F, Iovane V, Pagnini U, Cerracchio C, Brandi S, Levante M, Marati L, Ferrara G, Tammaro V, De Carlo E, Iovane G, Fusco G. First Description of Serological Evidence for SARS-CoV-2 in Lactating Cows. Animals (Basel) 2022; 12:ani12111459. [PMID: 35681922 PMCID: PMC9179237 DOI: 10.3390/ani12111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the agent of the disease that has caused a global pandemic, known as coronavirus disease 2019 (COVID-19). Coronaviruses (CoVs) may emerge from wildlife hosts and infect humans and animals. Up to now, natural infection with SARS-CoV-2 has been reported in several animals, but it has not been found in farm animals, such as buffaloes, goats, sheep, horses, rabbits, hens, pigs, or cows, despite contact with their SARS-CoV-2-positive human breeders. Furthermore, a low susceptibility to SARS-CoV-2 has been detected in experimentally infected cattle with SARS-CoV-2. The unknown zoonotic potential of this virus is a cause of concern for pet owners and farmers. The limited data on cattle suggest that cattle show low susceptibility to SARS-CoV-2 and probably do not function as reservoirs. However, in areas with large cattle populations and a high prevalence of SARS-CoV-2 infection in humans, close contact between livestock and farmworkers may cause reverse zoonotic infections in cattle, as has already been described for highly sensitive animal species, such as minks, cats, and dogs. Thus, studying the zoonotic characteristics of SARS-CoV-2 could help in the development of a strategy for virus detection and the control of viral dissemination. Abstract Following the COVID-19 epidemic outbreak in Ariano Irpino, Campania region (Italy), we tested lactating cows for the presence of SARS-CoV-2 on a cattle farm at which, prior to the investigation, 13 of the 20 farmworkers showed COVID-19-like symptoms, and one of them died. Twenty-four lactating cows were sampled to detect SARS-CoV-2. All nasal and rectal swabs and milk samples were negative for SARS-CoV-2 RNA. Of the 24 collected serum samples, 11 showed antibodies against SARS-CoV-2 nucleocapsid protein, 14 showed antibodies against SARS-CoV-2 spike protein, and 13 developed neutralising antibodies for SARS-COV-2; all samples were negative for Bovine Coronavirus (BCoV), another betacoronavirus. To our knowledge, this is the first report of natural serological evidence of SARS-CoV-2 infection in lactating cows. We hypothesise that this may be a case of reverse zoonosis. However, the role of cattle in SARS-CoV-2 infection and transmission seems to be negligible.
Collapse
Affiliation(s)
- Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.F.); (U.P.); (C.C.); (G.F.)
| | - Valentina Iovane
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy;
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.F.); (U.P.); (C.C.); (G.F.)
| | - Claudia Cerracchio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.F.); (U.P.); (C.C.); (G.F.)
| | - Sergio Brandi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, 80055 Naples, Italy; (S.B.); (M.L.); (L.M.); (G.F.)
| | - Martina Levante
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, 80055 Naples, Italy; (S.B.); (M.L.); (L.M.); (G.F.)
| | - Luisa Marati
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, 80055 Naples, Italy; (S.B.); (M.L.); (L.M.); (G.F.)
| | - Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.F.); (U.P.); (C.C.); (G.F.)
| | - Virginio Tammaro
- Azienda Sanitaria Locale Avellino (Ariano Irpino), 83031 Avellino, Italy;
| | - Esterina De Carlo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, 80055 Naples, Italy; (S.B.); (M.L.); (L.M.); (G.F.)
- Correspondence: (E.D.C.); (G.I.); Tel.: +39-0812536178 (E.D.C. & G.I.)
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.F.); (U.P.); (C.C.); (G.F.)
- Correspondence: (E.D.C.); (G.I.); Tel.: +39-0812536178 (E.D.C. & G.I.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, 80055 Naples, Italy; (S.B.); (M.L.); (L.M.); (G.F.)
| |
Collapse
|
32
|
Infantino M, Manfredi M, Stacchini L, Cosma C, Grossi V, Lari B, Russo E, Amedei A, Benucci M, Veneziani F, Casprini P, Catalano CM, Cirrincione G, Bonaccorsi G, Pompetti A. The role of neutralizing antibodies by sVNT after two doses of BNT162b2 mRNA vaccine in a cohort of Italian healthcare workers. Clin Chem Lab Med 2022; 60:934-940. [PMID: 35303766 DOI: 10.1515/cclm-2022-0170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Evaluating anti-SARS-CoV-2 antibody levels is a current priority to drive immunization, as well as to predict when a vaccine booster dose may be required and for which priority groups. The aim of our study was to investigate the kinetics of anti-SARS-CoV-2 Spike S1 protein IgG (anti-S1 IgG) antibodies and neutralizing antibodies (NAbs) in an Italian cohort of healthcare workers (HCWs), following the Pfizer/BNT162b2 mRNA vaccine, over a period of up to six months after the second dose. METHODS We enrolled 57 HCWs, without clinical history of COVID-19 infection. Fluoroenzyme-immunoassay was used for the quantitative anti-S1 IgG antibodies at different time points T1 (one month), T3 (three months) and T6 (six months) following the second vaccine shot. Simultaneously, a commercial surrogate virus neutralization test (sVNT) was used for the determination of NAbs, expressed as inhibition percentage (% IH). RESULTS Median values of anti-S1 IgG antibodies decreased from T1 (1,452 BAU/mL) to T6 (104 BAU/mL) with a percent variation of 92.8% while the sVNT showed a percent variation of 34.3% for the same time frame. The decline in anti-S1 IgG antibodies from T1 to T6 was not accompanied by a loss of the neutralizing capacity of antibodies. In fact at T6 a neutralization percentage <20% IH was observed only in 3.51% of HCWs. CONCLUSIONS Our findings reveal that the decrease of anti-S1 IgG levels do not correspond in parallel to a decrease of NAbs over time, which highlights the necessity of using both assays to assess vaccination effectiveness.
Collapse
Affiliation(s)
- Maria Infantino
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, Florence, Italy
| | - Mariangela Manfredi
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, Florence, Italy
| | - Lorenzo Stacchini
- Department of Health Science, University of Florence, Florence, Italy
| | - Claudia Cosma
- Department of Health Science, University of Florence, Florence, Italy
| | - Valentina Grossi
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, Florence, Italy
| | - Barbara Lari
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Francesca Veneziani
- Clinical Pathology Laboratory Unit, S. Giovanni di Dio Hospital, Florence, Italy
| | - Patrizia Casprini
- Clinical Pathology Laboratory Unit, S. Giovanni di Dio Hospital, Florence, Italy
| | - Cateno Mario Catalano
- Department of Technical Health Services, Preventive Medicine, S. Giovanni di Dio Hospital, Florence, Italy
| | - Giuseppe Cirrincione
- Department of Technical Health Services, Preventive Medicine, S. Giovanni di Dio Hospital, Florence, Italy
| | | | - Adolfo Pompetti
- SOC Clinical Assistance Governance, SOS Preventive Medicine Unit, S. Giovanni di Dio Hospital, Florence, Italy
| |
Collapse
|
33
|
Liu L, Wang X, Li X, Li N. COVID-19 Vaccines and Public Anxiety: Antibody Tests May Be Widely Accepted. Front Public Health 2022; 10:819062. [PMID: 35602124 PMCID: PMC9120666 DOI: 10.3389/fpubh.2022.819062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background More than 200 countries are experiencing the coronavirus disease (COVID-19) pandemic. COVID-19 vaccination strategies have been implemented worldwide, and repeat COVID-19 outbreaks have been seen. The purpose of this study was to investigate the impact of COVID-19 vaccination on the reduction of perceived anxiety and the association between public anxiety and antibody testing intention during the COVID-19 pandemic. Methods Chinese adults aged 18 and over were surveyed using an anonymous online questionnaire in April and May 2021. The questionnaire collected sociodemographic characteristics, vaccination characteristics, perceived anxiety due to COVID-19, and attitudes toward future antibody testing after COVID-19 vaccination. Perceived anxiety was assessed on a visual analog scale (VAS). Multivariate logistic regression analysis was used to determine the factors influencing future antibody detection. Results A total of 3,233 people were investigated, 3,209 valid questionnaires were collected, and the response rate was 99.3%. Of the 3,209 respondents, 2,047 were vaccinated, and 1,162 were unvaccinated. There was a significant difference in anxiety levels between vaccinated and unvaccinated respondents (24.9±25.4 vs. 50.0±33.1, respectively). With the local spread of COVID-19 in mainland China, the public anxiety VAS scores increased by 15.4±25.6 (SMD=120%) and 33.8±31.7 (SMD=49%) among vaccinated and unvaccinated respondents, respectively. Of the 2,047 respondents who were vaccinated, 1,626 (79.4%) thought they would accept antibody testing. Those who displayed more anxiety about acquiring COVID-19 disease were more likely to accept COVID-19 antibody testing. If the antibody test results showed protective antibodies, 1,190 (58.1%) were more likely to arrange travel plans in China, while 526 (25.7%) thought they would feel safer traveling abroad. Conclusion COVID-19 vaccination strategies help reduce public anxiety. However, public anxiety may be elevated as the local transmission of COVID-19 occurs in mainland China, which is usually caused now by imported cases. Those who display more anxiety choose to have antibody testing. Improving the accessibility of COVID-19 antibody tests can help ease public anxiety and enhance the confidence of some people to participate in social activities.
Collapse
Affiliation(s)
- Leyuan Liu
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Xiaoxiao Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Xiaoguang Li
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Nan Li
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
34
|
Gargouri S, Abid N, Karray-Hakim H, Rebai A. Reply to letter to the editor by Lippi and Plebani: « The presence of anti-SARS-CoV-2 antibodies does not necessarily reflect efficient neutralization » (THEIJID-D-22-00085). Int J Infect Dis 2022; 117:137-138. [PMID: 35139391 PMCID: PMC8817950 DOI: 10.1016/j.ijid.2022.01.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Saba Gargouri
- Department of Microbiology, Habib Bourguiba University Hospital/Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Nabil Abid
- Laboratory of Transmissible Diseases and Biological Active Substances, Faculty of Pharmacy of Monastir, University of Monastir, Tunisia; High Institute of Biotechnology of Monastir, University of Monastir, Tunisia
| | - Hela Karray-Hakim
- Department of Microbiology, Habib Bourguiba University Hospital/Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Tunisia.
| |
Collapse
|
35
|
Lippi G, Plebani M. The presence of anti-SARS-CoV-2 antibodies does not necessarily reflect efficient neutralization. Int J Infect Dis 2022; 117:24. [PMID: 35114389 PMCID: PMC8802566 DOI: 10.1016/j.ijid.2022.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Italy.
| | - Mario Plebani
- Department of Medicine-DIMED, University of Padova, Padova, Italy
| |
Collapse
|
36
|
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 and caused a dramatic pandemic. Serological assays are used to check for immunization and assess herd immunity. We evaluated commercially available assays designed to quantify antibodies directed to the SARS-CoV-2 Spike (S) antigen, either total (Wantaï SARS-CoV-2 Ab ELISA) or IgG (SARS-CoV-2 IgG II Quant on Alinity, Abbott, and Liaison SARS-CoV-2 TrimericS IgG, Diasorin). The specificities of the Wantaï, Alinity, and Liaison assays were evaluated using 100 prepandemic sera and were 98, 99, and 97%, respectively. The sensitivities of all three were around 100% when tested on 35 samples taken 15 to 35 days postinfection. They were less sensitive for 150 sera from late infections (>180 days). Using the first WHO international standard (NIBSC), we showed that the Wantai results were concordant with the NIBSC values, while Liaison and Alinity showed a proportional bias of 1.3 and 7, respectively. The results of the 3 immunoassays were significantly globally pairwise correlated and for late infection sera (P < 0.001). They were correlated for recent infection sera measured with Alinity and Liaison (P < 0.001). However, the Wantai results of recent infections were not correlated with those from Alinity or Liaison. All the immunoassay results were significantly correlated with the neutralizing antibody titers obtained using a live virus neutralization assay with the B1.160 SARS-CoV-2 strain. These assays will be useful once the protective anti-SARS-CoV-2 antibody titer has been determined. IMPORTANCE Standardization and correlation with virus neutralization assays are critical points to compare the performance of serological assays designed to quantify anti-SARS-CoV-2 antibodies in order to identify their optimal use. We have evaluated three serological immunoassays based on the virus spike antigen that detect anti-SARS-CoV-2 antibodies: a microplate assay and two chemiluminescent assays performed with Alinity (Abbott) and Liaison (Diasorin) analysers. We used an in-house live virus neutralization assay and the first WHO international standard to assess the comparison. This study could be useful to determine guidelines on the use of serological results to manage vaccination and treatment with convalescent plasma or monoclonal antibodies.
Collapse
|
37
|
Gillot C, Favresse J, Maloteau V, Dogné JM, Douxfils J. Dynamics of Neutralizing Antibody Responses Following Natural SARS-CoV-2 Infection and Correlation with Commercial Serologic Tests. A Reappraisal and Indirect Comparison with Vaccinated Subjects. Viruses 2021; 13:2329. [PMID: 34835135 PMCID: PMC8621742 DOI: 10.3390/v13112329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/30/2023] Open
Abstract
Neutralising antibodies (NAbs) represent the real source of protection against SARS-CoV-2 infections by preventing the virus from entering target cells. The gold standard in the detection of these antibodies is the plaque reduction neutralization test (PRNT). As these experiments must be done in a very secure environment, other techniques based on pseudoviruses: pseudovirus neutralization test (pVNT) or surrogate virus neutralization test (sVNT) have been developed. Binding assays, on the other hand, measure total antibodies or IgG, IgM, and IgA directed against one epitope of the SARS-CoV-2, independently of their neutralizing capacity. The aim of this study is to compare the performance of six commercial binding assays to the pVNT and sVNT. In this study, we used blood samples from a cohort of 62 RT-PCR confirmed COVID-19 patients. Based on the results of the neutralizing assays, adapted cut-offs for the binding assays were calculated. The use of these adapted cut-offs does not permit to improve the accuracy of the serological assays and we did not find an adapted cut-off able to improve the capacity of these tests to detect NAbs. For a part of the population, a longitudinal follow-up with at least two samples for the same patient was performed. From day 14 to day 291, more than 75% of the samples were positive for NAbs (n = 87/110, 79.1%). Interestingly, 6 months post symptoms onset, the majority of the samples (N = 44/52, 84.6%) were still positive for NAbs. This is in sharp contrast with the results we obtained 6 months post-vaccination in our cohort of healthcare workers who have received the two-dose regimens of BNT162b2. In this cohort of vaccinated subjects, 43% (n = 25/58) of the participants no longer exhibit NAbs activity 180 days after the administration of the first dose of BNT162b2.
Collapse
Affiliation(s)
- Constant Gillot
- Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium; (C.G.); (J.F.); (V.M.); (J.-M.D.)
| | - Julien Favresse
- Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium; (C.G.); (J.F.); (V.M.); (J.-M.D.)
- Department of Laboratory Medicine, Clinique St-Luc Bouge, 5000 Namur, Belgium
| | - Vincent Maloteau
- Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium; (C.G.); (J.F.); (V.M.); (J.-M.D.)
| | - Jean-Michel Dogné
- Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium; (C.G.); (J.F.); (V.M.); (J.-M.D.)
| | - Jonathan Douxfils
- Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium; (C.G.); (J.F.); (V.M.); (J.-M.D.)
- Qualiblood s.a., 5000 Namur, Belgium
| |
Collapse
|