1
|
Sanseverino I, Rinaldi AO, Purificato C, Cortese A, Millefiorini E, Gauzzi MC. 1,25(OH) 2D3 Differently Modulates the Secretory Activity of IFN-DC and IL4-DC: A Study in Cells from Healthy Donors and MS Patients. Int J Mol Sci 2023; 24:ijms24076717. [PMID: 37047690 PMCID: PMC10094841 DOI: 10.3390/ijms24076717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Immune mechanisms play an essential role in driving multiple sclerosis (MS) and altered trafficking and/or activation of dendritic cells (DC) were observed in the central nervous system and cerebrospinal fluid of MS patients. Interferon β (IFNβ) has been used as a first-line therapy in MS for almost three decades and vitamin D deficiency is a recognized environmental risk factor for MS. Both IFNβ and vitamin D modulate DC functions. Here, we studied the response to 1,25-dihydoxyvitamin D3 (1,25(OH)2D3) of DC obtained with IFNβ/GM-CSF (IFN-DC) compared to classically derived IL4-DC, in three donor groups: MS patients free of therapy, MS patients undergoing IFNβ therapy, and healthy donors. Except for a decreased CCL2 secretion by IL4-DC from the MS group, no major defects were observed in the 1,25(OH)2D3 response of either IFN-DC or IL4-DC from MS donors compared to healthy donors. However, the two cell models strongly differed for vitamin D receptor level of expression as well as for basal and 1,25(OH)2D3-induced cytokine/chemokine secretion. 1,25(OH)2D3 up-modulated IL6, its soluble receptor sIL6R, and CCL5 in IL4-DC, and down-modulated IL10 in IFN-DC. IFN-DC, but not IL4-DC, constitutively secreted high levels of IL8 and of matrix-metalloproteinase-9, both down-modulated by 1,25(OH)2D3. DC may contribute to MS pathogenesis, but also provide an avenue for therapeutic intervention. 1,25(OH)2D3-induced tolerogenic DC are in clinical trial for MS. We show that the protocol of in vitro DC differentiation qualitatively and quantitatively affects secretion of cytokines and chemokines deeply involved in MS pathogenesis.
Collapse
Affiliation(s)
- Isabella Sanseverino
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | - Cristina Purificato
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonio Cortese
- Multiple Sclerosis Center, Sapienza University of Rome, 00161 Rome, Italy
| | | | | |
Collapse
|
2
|
Van Delen M, Janssens I, Dams A, Roosens L, Ogunjimi B, Berneman ZN, Derdelinckx J, Cools N. Tolerogenic Dendritic Cells Induce Apoptosis-Independent T Cell Hyporesponsiveness of SARS-CoV-2-Specific T Cells in an Antigen-Specific Manner. Int J Mol Sci 2022; 23:15201. [PMID: 36499533 PMCID: PMC9740551 DOI: 10.3390/ijms232315201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Although the global pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, there are currently no specific and highly efficient drugs for COVID-19 available, particularly in severe cases. Recent findings demonstrate that severe COVID-19 disease that requires hospitalization is associated with the hyperactivation of CD4+ and CD8+ T cell subsets. In this study, we aimed to counteract this high inflammatory state by inducing T-cell hyporesponsiveness in a SARS-CoV-2-specific manner using tolerogenic dendritic cells (tolDC). In vitro-activated SARS-CoV-2-specific T cells were isolated and stimulated with SARS-CoV-2 peptide-loaded monocyte-derived tolDC or with SARS-CoV-2 peptide-loaded conventional (conv) DC. We demonstrate a significant decrease in the number of interferon (IFN)-γ spot-forming cells when SARS-CoV-2-specific T cells were stimulated with tolDC as compared to stimulation with convDC. Importantly, this IFN-γ downmodulation in SARS-CoV-2-specific T cells was antigen-specific, since T cells retain their capacity to respond to an unrelated antigen and are not mediated by T cell deletion. Altogether, we have demonstrated that SARS-CoV-2 peptide-pulsed tolDC induces SARS-CoV-2-specific T cell hyporesponsiveness in an antigen-specific manner as compared to stimulation with SARS-CoV-2-specific convDC. These observations underline the clinical potential of tolDC to correct the immunological imbalance in the critically ill.
Collapse
Affiliation(s)
- Mats Van Delen
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Ibo Janssens
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Amber Dams
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Laurence Roosens
- Laboratory of Clinical Biology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Benson Ogunjimi
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), VAXINFECTIO, University of Antwerp, 2610 Antwerp, Belgium
- Department of Paediatrics, Antwerp University Hospital, 2650 Edegem, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), VAXINFECTIO, University of Antwerp, 2610 Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
| | - Zwi N. Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Judith Derdelinckx
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
3
|
De Laere M, Berneman ZN, Cools N. To the Brain and Back: Migratory Paths of Dendritic Cells in Multiple Sclerosis. J Neuropathol Exp Neurol 2019; 77:178-192. [PMID: 29342287 PMCID: PMC5901086 DOI: 10.1093/jnen/nlx114] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Migration of dendritic cells (DC) to the central nervous system (CNS) is a critical event in the pathogenesis of multiple sclerosis (MS). While up until now, research has mainly focused on the transmigration of DC through the blood-brain barrier, experimental evidence points out that also the choroid plexus and meningeal vessels represent important gateways to the CNS, especially in early disease stages. On the other hand, DC can exit the CNS to maintain immunological tolerance to patterns expressed in the CNS, a process that is perturbed in MS. Targeting trafficking of immune cells, including DC, to the CNS has demonstrated to be a successful strategy to treat MS. However, this approach is known to compromise protective immune surveillance of the brain. Unravelling the migratory paths of regulatory and pathogenic DC within the CNS may ultimately lead to the design of new therapeutic strategies able to selectively interfere with the recruitment of pathogenic DC to the CNS, while leaving host protective mechanisms intact.
Collapse
Affiliation(s)
- Maxime De Laere
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp
| |
Collapse
|
4
|
Ten Brinke A, Martinez-Llordella M, Cools N, Hilkens CMU, van Ham SM, Sawitzki B, Geissler EK, Lombardi G, Trzonkowski P, Martinez-Caceres E. Ways Forward for Tolerance-Inducing Cellular Therapies- an AFACTT Perspective. Front Immunol 2019; 10:181. [PMID: 30853957 PMCID: PMC6395407 DOI: 10.3389/fimmu.2019.00181] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Clinical studies with cellular therapies using tolerance-inducing cells, such as tolerogenic antigen-presenting cells (tolAPC) and regulatory T cells (Treg) for the prevention of transplant rejection and the treatment of autoimmune diseases have been expanding the last decade. In this perspective, we will summarize the current perspectives of the clinical application of both tolAPC and Treg, and will address future directions and the importance of immunomonitoring in clinical studies that will result in progress in the field.
Collapse
Affiliation(s)
- Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marc Martinez-Llordella
- Department of Inflammation Biology, MRC Centre for Transplantation, School of Immunology and Microbial Sciences, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Catharien M U Hilkens
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Birgit Sawitzki
- Charité-Universitaetsmedizin Berlin, Berlin Institute of Health, Institute for Medical Immunology, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Edward K Geissler
- Section of Experimental Surgery, Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Giovanna Lombardi
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Eva Martinez-Caceres
- Division of Immunology, Germans Trias i Pujol University Hospital, LCMN, IGTP, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
5
|
Meena M, Cools N. On the road to new treatments for multiple sclerosis: targeting dendritic cell migration into the central nervous system. Neural Regen Res 2019; 14:2088-2090. [PMID: 31397344 PMCID: PMC6788248 DOI: 10.4103/1673-5374.262583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Megha Meena
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
6
|
Healy LM, Jang JH, Won SY, Lin YH, Touil H, Aljarallah S, Bar-Or A, Antel JP. MerTK-mediated regulation of myelin phagocytosis by macrophages generated from patients with MS. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 4:e402. [PMID: 29379818 PMCID: PMC5777663 DOI: 10.1212/nxi.0000000000000402] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/09/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To document functional differences between monocyte-derived macrophages (MDMs) of patients with MS and the ability of age/sex-matched healthy donor cells to phagocytose human myelin and to investigate the molecular mechanisms that underlie this. METHODS MDMs were derived from peripheral blood monocytes of 25 untreated patients with relapsing-remitting MS and secondary progressive MS and age/sex-matched healthy controls (HCs). Phagocytosis was assessed by flow cytometry using fluorescently labeled human myelin. Quantification of messenger RNA and protein expression of Tyro3, Axl, and MerTK family molecules was determined by quantitative PCR, Western blotting, and flow cytometry. RESULTS Cells of patients with MS display a reduced ability to phagocytose human myelin but not red blood cells as compared to matched HCs. These cells express significantly lower levels of the phagocytic tyrosine kinase receptor, MerTK, and its natural ligand, growth arrest-specific 6, independently of the activation state of the cells. Increased expression of interleukin 10 following myelin uptake by healthy donor cells is lost in MDMs of patients with MS; this effect is mediated through the MerTK pathway. Treatment of MS cells with transforming growth factor β (TGFβ) restored both phagocytosis and expression deficits. CONCLUSIONS We describe a molecular mechanism that underlies a defect in myelin phagocytosis by macrophages generated from patients with MS. This abnormality involves decreased expression of MerTK and its ligands and can be rescued by treatment with TGFβ.
Collapse
Affiliation(s)
- Luke M Healy
- Neuroimmunology Unit (L.M.H., J.H.J., S.-Y.W., Y.H.L., H.T., S.A., A.B.-O., J.P.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and Multiple Sclerosis Division (A.B.-O.), Department of Neurology and Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jeong Ho Jang
- Neuroimmunology Unit (L.M.H., J.H.J., S.-Y.W., Y.H.L., H.T., S.A., A.B.-O., J.P.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and Multiple Sclerosis Division (A.B.-O.), Department of Neurology and Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - So-Yoon Won
- Neuroimmunology Unit (L.M.H., J.H.J., S.-Y.W., Y.H.L., H.T., S.A., A.B.-O., J.P.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and Multiple Sclerosis Division (A.B.-O.), Department of Neurology and Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Yun Hsuan Lin
- Neuroimmunology Unit (L.M.H., J.H.J., S.-Y.W., Y.H.L., H.T., S.A., A.B.-O., J.P.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and Multiple Sclerosis Division (A.B.-O.), Department of Neurology and Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Hanane Touil
- Neuroimmunology Unit (L.M.H., J.H.J., S.-Y.W., Y.H.L., H.T., S.A., A.B.-O., J.P.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and Multiple Sclerosis Division (A.B.-O.), Department of Neurology and Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Salman Aljarallah
- Neuroimmunology Unit (L.M.H., J.H.J., S.-Y.W., Y.H.L., H.T., S.A., A.B.-O., J.P.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and Multiple Sclerosis Division (A.B.-O.), Department of Neurology and Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Amit Bar-Or
- Neuroimmunology Unit (L.M.H., J.H.J., S.-Y.W., Y.H.L., H.T., S.A., A.B.-O., J.P.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and Multiple Sclerosis Division (A.B.-O.), Department of Neurology and Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jack P Antel
- Neuroimmunology Unit (L.M.H., J.H.J., S.-Y.W., Y.H.L., H.T., S.A., A.B.-O., J.P.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and Multiple Sclerosis Division (A.B.-O.), Department of Neurology and Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
7
|
Immunomodulatory Effects of 1,25-Dihydroxyvitamin D 3 on Dendritic Cells Promote Induction of T Cell Hyporesponsiveness to Myelin-Derived Antigens. J Immunol Res 2016; 2016:5392623. [PMID: 27703987 PMCID: PMC5039280 DOI: 10.1155/2016/5392623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/06/2016] [Accepted: 06/27/2016] [Indexed: 11/25/2022] Open
Abstract
While emerging evidence indicates that dendritic cells (DC) play a central role in the pathogenesis of multiple sclerosis (MS), their modulation with immunoregulatory agents provides prospect as disease-modifying therapy. Our observations reveal that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) treatment of monocyte-derived DC results in a semimature phenotype and anti-inflammatory cytokine profile as compared to conventional DC, in both healthy controls and MS patients. Importantly, 1,25(OH)2D3-treated DC induce T cell hyporesponsiveness, as demonstrated in an allogeneic mixed leukocyte reaction. Next, following a freeze-thaw cycle, 1,25(OH)2D3-treated immature DC could be recovered with a 78% yield and 75% viability. Cryopreservation did not affect the expression of membrane markers by 1,25(OH)2D3-treated DC nor their capacity to induce T cell hyporesponsiveness. In addition, the T cell hyporesponsiveness induced by 1,25(OH)2D3-treated DC is antigen-specific and robust since T cells retain their capacity to respond to an unrelated antigen and do not reactivate upon rechallenge with fully mature conventional DC, respectively. These observations underline the clinical potential of tolerogenic DC (tolDC) to correct the immunological imbalance in MS. Furthermore, the feasibility to cryopreserve highly potent tolDC will, ultimately, contribute to the large-scale production and the widely applicable use of tolDC.
Collapse
|
8
|
Generation of mouse and human dendritic cells in vitro. J Immunol Methods 2016; 432:24-9. [PMID: 26876301 DOI: 10.1016/j.jim.2016.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/26/2016] [Accepted: 02/09/2016] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DC) that can orchestrate immune responses and maintain host homeostasis, are indispensable components of the immune system. Although distributed widely in many lymphoid and non-lymphoid tissues, their rarity in number has become a limiting factor for DC related research and therapies. Therefore, methods for efficiently generating large numbers of DC resembling their in vivo counterparts are urgently needed for DC related research and therapies. Herein we summarize the current methods for generating mouse and human DC in vitro and hope that these will facilitate both studies of DC biology and their clinical applications.
Collapse
|