1
|
Zhu M, Cao L, Melino S, Candi E, Wang Y, Shao C, Melino G, Shi Y, Chen X. Orchestration of Mesenchymal Stem/Stromal Cells and Inflammation During Wound Healing. Stem Cells Transl Med 2023; 12:576-587. [PMID: 37487541 PMCID: PMC10502569 DOI: 10.1093/stcltm/szad043] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/13/2023] [Indexed: 07/26/2023] Open
Abstract
Wound healing is a complex process and encompasses a number of overlapping phases, during which coordinated inflammatory responses following tissue injury play dominant roles in triggering evolutionarily highly conserved principals governing tissue repair and regeneration. Among all nonimmune cells involved in the process, mesenchymal stem/stromal cells (MSCs) are most intensely investigated and have been shown to play fundamental roles in orchestrating wound healing and regeneration through interaction with the ordered inflammatory processes. Despite recent progress and encouraging results, an informed view of the scope of this evolutionarily conserved biological process requires a clear understanding of the dynamic interplay between MSCs and the immune systems in the process of wound healing. In this review, we outline current insights into the ways in which MSCs sense and modulate inflammation undergoing the process of wound healing, highlighting the central role of neutrophils, macrophages, and T cells during the interaction. We also draw attention to the specific effects of MSC-based therapy on different pathological wound healing. Finally, we discuss how ongoing scientific advances in MSCs could be efficiently translated into clinical strategies, focusing on the current limitations and gaps that remain to be overcome for achieving preferred functional tissue regeneration.
Collapse
Affiliation(s)
- Mengting Zhu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Lijuan Cao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Sonia Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Shanghai, People’s Republic of China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
| | - Gerry Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
| | - Xiaodong Chen
- Wuxi Sinotide New Drug Discovery Institutes, Huishan Economic and Technological Development Zone, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
2
|
Luo Y, Xu X, Ye Z, Xu Q, Li J, Liu N, Du Y. 3D bioprinted mesenchymal stromal cells in skin wound repair. Front Surg 2022; 9:988843. [PMID: 36311952 PMCID: PMC9614372 DOI: 10.3389/fsurg.2022.988843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Skin tissue regeneration and repair is a complex process involving multiple cell types, and current therapies are limited to promoting skin wound healing. Mesenchymal stromal cells (MSCs) have been proven to enhance skin tissue repair through their multidifferentiation and paracrine effects. However, there are still difficulties, such as the limited proliferative potential and the biological processes that need to be strengthened for MSCs in wound healing. Recently, three-dimensional (3D) bioprinting has been applied as a promising technology for tissue regeneration. 3D-bioprinted MSCs could maintain a better cell ability for proliferation and expression of biological factors to promote skin wound healing. It has been reported that 3D-bioprinted MSCs could enhance skin tissue repair through anti-inflammatory, cell proliferation and migration, angiogenesis, and extracellular matrix remodeling. In this review, we will discuss the progress on the effect of MSCs and 3D bioprinting on the treatment of skin tissue regeneration, as well as the perspective and limitations of current research.
Collapse
|
3
|
Valade G, Libert N, Martinaud C, Vicaut E, Banzet S, Peltzer J. Therapeutic Potential of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in the Prevention of Organ Injuries Induced by Traumatic Hemorrhagic Shock. Front Immunol 2021; 12:749659. [PMID: 34659252 PMCID: PMC8511792 DOI: 10.3389/fimmu.2021.749659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
Severe trauma is the principal cause of death among young people worldwide. Hemorrhagic shock is the leading cause of death after severe trauma. Traumatic hemorrhagic shock (THS) is a complex phenomenon associating an absolute hypovolemia secondary to a sudden and significant extravascular blood loss, tissue injury, and, eventually, hypoxemia. These phenomena are responsible of secondary injuries such as coagulopathy, endotheliopathy, microcirculation failure, inflammation, and immune activation. Collectively, these dysfunctions lead to secondary organ failures and multi-organ failure (MOF). The development of MOF after severe trauma is one of the leading causes of morbidity and mortality, where immunological dysfunction plays a central role. Damage-associated molecular patterns induce an early and exaggerated activation of innate immunity and a suppression of adaptive immunity. Severe complications are associated with a prolonged and dysregulated immune–inflammatory state. The current challenge in the management of THS patients is preventing organ injury, which currently has no etiological treatment available. Modulating the immune response is a potential therapeutic strategy for preventing the complications of THS. Mesenchymal stromal cells (MSCs) are multipotent cells found in a large number of adult tissues and used in clinical practice as therapeutic agents for immunomodulation and tissue repair. There is growing evidence that their efficiency is mainly attributed to the secretion of a wide range of bioactive molecules and extracellular vesicles (EVs). Indeed, different experimental studies revealed that MSC-derived EVs (MSC-EVs) could modulate local and systemic deleterious immune response. Therefore, these new cell-free therapeutic products, easily stored and available immediately, represent a tremendous opportunity in the emergency context of shock. In this review, the pathophysiological environment of THS and, in particular, the crosstalk between the immune system and organ function are described. The potential therapeutic benefits of MSCs or their EVs in treating THS are discussed based on the current knowledge. Understanding the key mechanisms of immune deregulation leading to organ damage is a crucial element in order to optimize the preparation of EVs and potentiate their therapeutic effect.
Collapse
Affiliation(s)
- Guillaume Valade
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| | - Nicolas Libert
- Service d'Anesthésie-Réanimation, Hôpital d'instruction des armées Percy, Clamart, France
| | - Christophe Martinaud
- Unité de Médicaments de Thérapie Innovante, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Eric Vicaut
- Laboratoire d'Etude de la Microcirculation, Université de Paris, UMRS 942 INSERM, Paris, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| | - Juliette Peltzer
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| |
Collapse
|
4
|
Effect of Systemic Adipose-derived Stem Cell Therapy on Functional Nerve Regeneration in a Rodent Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e2953. [PMID: 32802651 PMCID: PMC7413771 DOI: 10.1097/gox.0000000000002953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Regardless of etiology, peripheral nerve injuries (PNI) result in disruption/loss of neuromuscular junctions, target muscle denervation, and poor sensorimotor outcomes with associated pain and disability. Adipose-derived stem cells (ASCs) have shown promise in neuroregeneration. However, there is a paucity of objective assessments reflective of functional neuroregeneration in experimental PNI. Here, we use a multimodal, static, and dynamic approach to evaluate functional outcomes after ASC therapy in a rodent PNI model.
Collapse
|
5
|
Effect of bone marrow mesenchymal stem cells on perforator skin flap survival area in rats. Br J Oral Maxillofac Surg 2020; 58:669-674. [PMID: 32446592 DOI: 10.1016/j.bjoms.2020.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Trans-territory perforator flaps are commonly used to reconstruct large defects of the soft tissues. The distal portion of the flap often becomes necrotic, however, as a result of the jeopardised vasculature of choke zone II. The trophic and vascular regenerative properties of bone marrow mesenchymal stem cells (BMSC) seemed to be a promising approach to prevent flaps becoming ischaemic. The purpose of our study is to evaluate the effects of BMSC on the survival of the three-territory perforator flap. The flap model was created based on the deep circumflex iliac vessel in rats. Eighteen rats were distributed, at random, into three groups. Immediately after the flaps were placed, groups were respectively given a single panniculus carnosus injection at choke zone II of either 1×105 (BMSCslow), 1×106 (BMSCshig) BMSC, or phosphate-buffered saline (PBS). On postoperative day seven, we assessed the gross view of the flap and survival. We also evaluated microvessels by histological examination and angiogenesis-related gene expression by quantitative real-time polymerase chain reaction. After high dosage of BMSC, the flap survival rate, diameter and density of microvessels, vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) levels were significantly higher in the BMSC treatment group than the control group. We therefore confirmed the positive effects of BMSC on the survival of multi-territory perforator flaps.
Collapse
|
6
|
Baudry N, Starck J, Aussel C, Lund K, Aletti M, Duranteau J, Banzet S, Lataillade JJ, Vicaut E, Peltzer J. Effect of Preconditioned Mesenchymal Stromal Cells on Early Microvascular Disturbance in a Mouse Sepsis Model. Stem Cells Dev 2019; 28:1595-1606. [DOI: 10.1089/scd.2019.0134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Nathalie Baudry
- Laboratoire d'Etude de la Microcirculation, Université Paris VII Lariboisière St-Louis, UMR 942, Paris, France
| | - Julie Starck
- Laboratoire d'Etude de la Microcirculation, Université Paris VII Lariboisière St-Louis, UMR 942, Paris, France
- Service de Réanimation Pédiatrique, Hôpital Necker Enfants-Malades, Assistance Publique, Hôpitaux de Paris, Faculté de Médecine, Université Paris–Descartes, Paris, France
| | - Clotilde Aussel
- Institut de Recherche Biomédicale des Armées (IRBA), Unité Mixte INSERM U1197/Ministère des Armées, Clamart, France
| | - Kyle Lund
- Institut de Recherche Biomédicale des Armées (IRBA), Unité Mixte INSERM U1197/Ministère des Armées, Clamart, France
| | - Marc Aletti
- Institut de Recherche Biomédicale des Armées (IRBA), Unité Mixte INSERM U1197/Ministère des Armées, Clamart, France
| | - Jacques Duranteau
- Service d'Anesthésie-Réanimation Chirurgicale, Hôpital de Bicêtre, Université Paris-Sud, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), Unité Mixte INSERM U1197/Ministère des Armées, Clamart, France
| | - Jean-Jacques Lataillade
- Institut de Recherche Biomédicale des Armées (IRBA), Unité Mixte INSERM U1197/Ministère des Armées, Clamart, France
| | - Eric Vicaut
- Laboratoire d'Etude de la Microcirculation, Université Paris VII Lariboisière St-Louis, UMR 942, Paris, France
| | - Juliette Peltzer
- Institut de Recherche Biomédicale des Armées (IRBA), Unité Mixte INSERM U1197/Ministère des Armées, Clamart, France
| |
Collapse
|
7
|
Kollar B, Kamat P, Klein H, Waldner M, Schweizer R, Plock J. The Significance of Vascular Alterations in Acute and Chronic Rejection for Vascularized Composite Allotransplantation. J Vasc Res 2019; 56:163-180. [DOI: 10.1159/000500958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/14/2019] [Indexed: 11/19/2022] Open
|
8
|
Chehelcheraghi F, Bayat M, Chien S. Effect of Mesenchymal Stem Cells and Chicken Embryo Extract on Flap Viability and Mast Cells in Rat Skin Flaps. J INVEST SURG 2018; 33:123-133. [DOI: 10.1080/08941939.2018.1479006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Farzaneh Chehelcheraghi
- Anatomical Sciences Department, School of Medicine, Lorestan University Medical of Sciences, Khoramabad, IR Iran
| | - Mohammad Bayat
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, Kentucky, USA; Supported in part by NIH grant DK105692
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, Kentucky, USA; Supported in part by NIH grant DK105692
| |
Collapse
|
9
|
Berndt R, Hummitzsch L, Heß K, Albrecht M, Zitta K, Rusch R, Sarras B, Bayer A, Cremer J, Faendrich F, Groß J. Allogeneic transplantation of programmable cells of monocytic origin (PCMO) improves angiogenesis and tissue recovery in critical limb ischemia (CLI): a translational approach. Stem Cell Res Ther 2018; 9:117. [PMID: 29703251 PMCID: PMC5921555 DOI: 10.1186/s13287-018-0871-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/18/2018] [Accepted: 04/12/2018] [Indexed: 01/05/2023] Open
Abstract
BACKROUND Employing growth factor-induced partial reprogramming in vitro, peripheral human blood monocytes can acquire a state of plasticity along with expression of various markers of pluripotency. These so-called programmable cells of monocytic origin (PCMO) hold great promise in regenerative therapies. The aim of this translational study was to explore and exploit the functional properties of PCMO for allogeneic cell transplantation therapy in critical limb ischemia (CLI). METHODS Using our previously described differentiation protocol, murine and human monocytes were differentiated into PCMO. We examined paracrine secretion of pro-angiogenic and tissue recovery-associated proteins under hypoxia and induction of angiogenesis by PCMO in vitro. Allogeneic cell transplantation of PCMO was performed in a hind limb ischemia mouse model in comparison to cell transplantation of native monocytes and a placebo group. Moreover, we analyzed retrospectively four healing attempts with PCMO in patients with peripheral artery disease (PAD; Rutherford classification, stage 5 and 6). Statistical analysis was performed by using one-way ANOVA, Tukey's test or the Student's t test, p < 0.05. RESULTS Cell culture experiments revealed good resilience of PCMO under hypoxia, enhanced paracrine release of pro-angiogenic and tissue recovery-associated proteins and induction of angiogenesis in vitro by PCMO. Animal experiments demonstrated significantly enhanced SO2 saturation, blood flow, neoangiogenesis and tissue recovery after treatment with PCMO compared to treatment with native monocytes and placebo. Finally, first therapeutic application of PCMO in humans demonstrated increased vascular collaterals and improved wound healing in patients with chronic CLI without exaggerated immune response, malignant processes or extended infection after 12 months. In all patients minor and/or major amputations of the lower extremity could be avoided. CONCLUSIONS In summary, PCMO improve angiogenesis and tissue recovery in chronic ischemic muscle and first clinical results promise to provide an effective and safe treatment of CLI.
Collapse
Affiliation(s)
- Rouven Berndt
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany.
| | - Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Katharina Heß
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rene Rusch
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| | - Beke Sarras
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| | - Andreas Bayer
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| | - Jochen Cremer
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| | - Fred Faendrich
- Department of Applied Cell Therapy, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Justus Groß
- Department of Cardiaovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Hs 18, D-24105, Kiel, Germany
| |
Collapse
|
10
|
Berndt R, Albrecht M. Reprogrammierte Monozyten in der kardiovaskulären Therapie. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2018. [DOI: 10.1007/s00398-017-0204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Tang YH, Thompson RW, Nathan C, Alexander JS, Lian T. Stem cells enhance reperfusion following ischemia: Validation using laser speckle imaging in predicting tissue repair. Laryngoscope 2018; 128:E198-E205. [DOI: 10.1002/lary.27110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Ya Hui Tang
- Department of Otolaryngology/HNSLSU Health Sciences CenterShreveport Louisiana U.S.A
| | - R. Will Thompson
- Department of Otolaryngology/HNSLSU Health Sciences CenterShreveport Louisiana U.S.A
| | - Cherie‐Ann Nathan
- Department of Otolaryngology/HNSLSU Health Sciences CenterShreveport Louisiana U.S.A
| | | | - Timothy Lian
- Department of Molecular and Cellular PhysiologyLSU Health Sciences CenterShreveport Louisiana U.S.A
| |
Collapse
|
12
|
Rocca A, Tafuri D, Paccone M, Giuliani A, Zamboli AGI, Surfaro G, Paccone A, Compagna R, Amato M, Serra R, Amato B. Cell Based Therapeutic Approach in Vascular Surgery: Application and Review. Open Med (Wars) 2017; 12:308-322. [PMID: 29071303 PMCID: PMC5651406 DOI: 10.1515/med-2017-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023] Open
Abstract
Multipotent stem cells - such as mesenchymal stem/stromal cells and stem cells derived from different sources like vascular wall are intensely studied to try to rapidly translate their discovered features from bench to bedside. Vascular wall resident stem cells recruitment, differentiation, survival, proliferation, growth factor production, and signaling pathways transduced were analyzed. We studied biological properties of vascular resident stem cells and explored the relationship from several factors as Matrix Metalloproteinases (MMPs) and regulations of biological, translational and clinical features of these cells. In this review we described a translational and clinical approach to Adult Vascular Wall Resident Multipotent Vascular Stem Cells (VW-SCs) and reported their involvement in alternative clinical approach as cells based therapy in vascular disease like arterial aneurysms or peripheral arterial obstructive disease.
Collapse
Affiliation(s)
- Aldo Rocca
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, ItalyVia Sergio Pansini, 80131Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Marianna Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Antonio Giuliani
- A.O.R.N. A. Cardarelli Hepatobiliary and Liver Transplatation Center, Naples, Italy
| | | | - Giuseppe Surfaro
- Antonio Cardarelli Hospital, General Surgery Unit, Campobasso, Italy
| | - Andrea Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Rita Compagna
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Maurizo Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Bruno Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
13
|
Enhanced survival of ischemic skin flap by combined treatment with bone marrow-derived stem cells and low-level light irradiation. Lasers Med Sci 2017; 33:1-9. [DOI: 10.1007/s10103-017-2312-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
|
14
|
c-Kit-Positive Adipose Tissue-Derived Mesenchymal Stem Cells Promote the Growth and Angiogenesis of Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7407168. [PMID: 28573141 PMCID: PMC5442334 DOI: 10.1155/2017/7407168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 01/10/2023]
Abstract
Background Adipose tissue-derived mesenchymal stem cells (ASCs) improve the regenerative ability and retention of fat grafts for breast reconstruction in cancer patients following mastectomy. However, ASCs have also been shown to promote breast cancer cell growth and metastasis. For the safety of ASC application, we aimed to identify specific markers for the subpopulation of ASCs that enhance the growth of breast cancer. Methods ASCs and bone marrow-derived vascular endothelial progenitor cells (EPCs) were isolated from Balb/c mice. c-Kit-positive (c-Kit+) or c-Kit-negative (c-Kit−) ASCs were cocultured with 4T1 breast cancer cells. Orthotropic murine models of 4T1, EPCs + 4T1, and c-Kit+/-ASCs + 4T1/EPCs were established in Balb/c mice. Results In coculture, c-Kit+ ASCs enhanced the viability and proliferation of 4T1 cells and stimulated c-Kit expression and interleukin-3 (IL-3) release. In mouse models, c-Kit+ASCs + 4T1/EPCs coinjection increased the tumor volume and vessel formation. Moreover, IL-3, stromal cell-derived factor-1, and vascular endothelial growth factor A in the c-Kit+ASCs + 4T1/EPCs coinjection group were higher than those in the 4T1, EPCs + 4T1, and c-Kit−ASCs + 4T1/EPCs groups. Conclusions c-Kit+ ASCs may promote breast cancer growth and angiogenesis by a synergistic effect of c-Kit and IL-3. Our findings suggest that c-Kit+ subpopulations of ASCs should be eliminated in fat grafts for breast reconstruction of cancer patients following mastectomy.
Collapse
|
15
|
Mesenchymal stem cell-conditioned media ameliorate diabetic endothelial dysfunction by improving mitochondrial bioenergetics via the Sirt1/AMPK/PGC-1α pathway. Clin Sci (Lond) 2016; 130:2181-2198. [PMID: 27613156 DOI: 10.1042/cs20160235] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/05/2016] [Indexed: 02/05/2023]
Abstract
Vasculopathy is a major complication of diabetes. Impaired mitochondrial bioenergetics and biogenesis due to oxidative stress are a critical causal factor for diabetic endothelial dysfunction. Sirt1, an NAD+-dependent enzyme, is known to play an important protective role through deacetylation of many substrates involved in oxidative phosphorylation and reactive oxygen species generation. Mesenchymal stem cell-conditioned medium (MSC-CM) has emerged as a promising cell-free therapy due to the trophic actions of mesenchymal stem cell (MSC)-secreted molecules. In the present study, we investigated the therapeutic potential of MSC-CMs in diabetic endothelial dysfunction, focusing on the Sirt1 signalling pathway and the relevance to mitochondrial function. We found that high glucose-stimulated MSC-CM attenuated several glucotoxicity-induced processes, oxidative stress and apoptosis of endothelial cells of the human umbilical vein. MSC-CM perfusion in diabetic rats ameliorated compromised aortic vasodilatation and alleviated oxidative stress in aortas. We further demonstrated that these effects were dependent on improved mitochondrial function and up-regulation of Sirt1 expression. MSC-CMs activated the phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt), leading to direct interaction between Akt and Sirt1, and subsequently enhanced Sirt1 expression. In addition, both MSC-CM and Sirt1 activation could increase the expression of peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α), as well as increase the mRNA expression of its downstream, mitochondrial, biogenesis-related genes. This indirect regulation was mediated by activation of AMP-activated protein kinase (AMPK). Overall our findings indicated that MSC-CM had protective effects on endothelial cells, with respect to glucotoxicity, by ameliorating mitochondrial dysfunction via the PI3K/Akt/Sirt1 pathway, and Sirt1 potentiated mitochondrial biogenesis, through the Sirt1/AMPK/PGC-1α pathway.
Collapse
|
16
|
Tang YH, Pennington LA, Scordino JW, Alexander JS, Lian T. Dynamics of early stem cell recruitment in skin flaps subjected to ischemia reperfusion injury. ACTA ACUST UNITED AC 2016; 23:221-8. [PMID: 27480360 DOI: 10.1016/j.pathophys.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/15/2016] [Accepted: 07/24/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Bone marrow-derived stromal cell (BMSCs) therapy improves survival of skin flaps subject to ischemia/reperfusion (I/R) injury. However, very little is known about the trafficking and distribution of BMSCs in post-ischemic skin tissue following intravenous administration. The aim of this study was to assess the behavior of BMSCs in post-ischemic skin flaps and to compare the magnitude and kinetics of accumulation of BMSCs and leukocytes following I/R. METHODS Cutaneous flaps perfused by the inferior epigastric vessels were created in C57Bl6 mice. The flaps were subjected to 3.5h of ischemia followed by reperfusion. Wound healing and vascular perfusion were assessed in 3 groups of mice (sham, I/R, and I/R+BMSCs treatment) on days 3, 5, 7 and 14 post-reperfusion. The kinetics and magnitude of BMSCs and leukocyte recruitment were quantified in additional 2 groups (Sham and I/R) after I/R using intravital fluorescence microscopy at 2 and 4h after the intravenous injection of fluorescently labeled BMSCs. RESULTS Wound healing after I/R was significantly enhanced in skin flaps of mice treated with BMSCs, compared to controls. The rolling velocity of BMSCs was higher compared to leukocytes both in control mice (32.4±3.7μm/s vs 24.0±2.2μm/s, p<0.05) and in I/R mice (34.6±3.8μm/s vs 20.2±2.3μm/s, p<0.005). However, the rolling velocity of both cell populations was not altered by I/R. The firm adhesion and transendothelial migration of BMSCs did not differ from the values detected for leukocytes for both control and I/R mice. CONCLUSIONS The magnitude and kinetics of BMSCs recruitment in skin flaps subjected to I/R are not significantly different from the responses noted for leukocytes, suggesting that similar mechanisms may be involved in the recruitment of both cell populations following I/R.
Collapse
Affiliation(s)
- Ya Hui Tang
- Department of Otolaryngology/HNS, LSU Health Sciences Center, Shreveport, LA 71130, United States.
| | - Lindsey A Pennington
- Department of Otolaryngology/HNS, LSU Health Sciences Center, Shreveport, LA 71130, United States
| | - Jessica W Scordino
- Department of Otolaryngology/HNS, LSU Health Sciences Center, Shreveport, LA 71130, United States
| | | | - Timothy Lian
- Department of Otolaryngology/HNS, LSU Health Sciences Center, Shreveport, LA 71130, United States
| |
Collapse
|
17
|
Premise and promise of mesenchymal stem cell-based therapies in clinical vascularized composite allotransplantation. Curr Opin Organ Transplant 2016; 20:608-14. [PMID: 26536421 DOI: 10.1097/mot.0000000000000247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Over the past decade, clinical vascularized composite allotransplantation (VCA) has enabled functional and quality of life restoration in a wide range of indications secondary to devastating tissue loss. However, the spectre of toxicity and long-term complications of chronic immunosuppression has curtailed the momentum of VCA. This study summarizes the literature evidence behind successful mesenchymal stem cell (MSC)-based cell therapies highlighting their multipronged immunomodulatory, restorative and regenerative characteristics with special emphasis towards VCA applications. RECENT FINDINGS Experimental and clinical studies in solid organs and VCA have confirmed that MSCs facilitate immunosuppression-free allograft survival or tolerance, stimulate peripheral nerve regeneration, attenuate ischaemia-reperfusion injury, and improve tissue healing after surgery. It has been hypothesized that MSC-induced long-term operational tolerance in experimental VCA is mediated by induction of mixed donor-specific chimerism and regulatory T-cell mechanisms. All these characteristics of MSCs could thus help expand the scope and clinical feasibility of VCA. SUMMARY Cellular therapies, especially those focusing on MSCs, are emerging in solid organ transplantation including VCA. Although some clinical trials have begun to assess the effects of MSCs in solid organ transplantation, much scientific domain remains uncharted, especially for VCA.
Collapse
|
18
|
Galipeau J, Krampera M, Barrett J, Dazzi F, Deans RJ, DeBruijn J, Dominici M, Fibbe WE, Gee AP, Gimble JM, Hematti P, Koh MBC, LeBlanc K, Martin I, McNiece IK, Mendicino M, Oh S, Ortiz L, Phinney DG, Planat V, Shi Y, Stroncek DF, Viswanathan S, Weiss DJ, Sensebe L. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 2015; 18:151-9. [PMID: 26724220 DOI: 10.1016/j.jcyt.2015.11.008] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 02/08/2023]
Abstract
Mesenchymal stromal cells (MSCs) as a pharmaceutical for ailments characterized by pathogenic autoimmune, alloimmune and inflammatory processes now cover the spectrum of early- to late-phase clinical trials in both industry and academic sponsored studies. There is a broad consensus that despite different tissue sourcing and varied culture expansion protocols, human MSC-like cell products likely share fundamental mechanisms of action mediating their anti-inflammatory and tissue repair functionalities. Identification of functional markers of potency and reduction to practice of standardized, easily deployable methods of measurements of such would benefit the field. This would satisfy both mechanistic research as well as development of release potency assays to meet Regulatory Authority requirements for conduct of advanced clinical studies and their eventual registration. In response to this unmet need, the International Society for Cellular Therapy (ISCT) addressed the issue at an international workshop in May 2015 as part of the 21st ISCT annual meeting in Las Vegas. The scope of the workshop was focused on discussing potency assays germane to immunomodulation by MSC-like products in clinical indications targeting immune disorders. We here provide consensus perspective arising from this forum. We propose that focused analysis of selected MSC markers robustly deployed by in vitro licensing and metricized with a matrix of assays should be responsive to requirements from Regulatory Authorities. Workshop participants identified three preferred analytic methods that could inform a matrix assay approach: quantitative RNA analysis of selected gene products; flow cytometry analysis of functionally relevant surface markers and protein-based assay of secretome. We also advocate that potency assays acceptable to the Regulatory Authorities be rendered publicly accessible in an "open-access" manner, such as through publication or database collection.
Collapse
Affiliation(s)
- Jacques Galipeau
- Department of Hematology and Medical Oncology, Winship Cancer Institute, and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Mauro Krampera
- Section of Hematology, Stem Cell Research Laboratory and Cell Factory, Department of Medicine, University of Verona, Verona, Italy
| | - John Barrett
- Stem Cell Allotransplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Dazzi
- Regenerative and Heamatological Medicine, King's College London, London, UK
| | - Robert J Deans
- Regenerative Medicine, Athersys Inc., Cleveland, OH, USA
| | - Joost DeBruijn
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, Division of Oncology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Willem E Fibbe
- Department of Immunohematology and Bloodtransfusion, Leiden University Medical Centre, Leiden, Netherlands
| | - Adrian P Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, USA
| | - Jeffery M Gimble
- Center for Stem Cell Research and Regenerative Medicine, Department of Medicine, and Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Mickey B C Koh
- Department of Haematology, St George's Hospital and Medical School, London, UK; Blood Services Group, Health Sciences Authority, Singapore
| | - Katarina LeBlanc
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Ian K McNiece
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Steve Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), Singapore
| | - Luis Ortiz
- Division of Occupational and Environmental Health Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
| | - Valerie Planat
- IFR150 STROMALab UMR 5273 UPS-CNRS-EFS-INSERM U1031, Toulouse, France
| | - Yufang Shi
- Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China; The First Affiliated Hospital, Soochow University Institutes for Translational Medicine, Suzhou, China
| | - David F Stroncek
- Cell Processing Section, Department of Transfusion Medicine Clinical Center, NIH, Bethesda, MD, USA
| | | | - Daniel J Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Luc Sensebe
- UMR5273 STROMALab CNRS/EFS/UPS-INSERM U1031, Toulouse, France
| |
Collapse
|
19
|
Endothelial-Leukocyte Interaction in Severe Malaria: Beyond the Brain. Mediators Inflamm 2015; 2015:168937. [PMID: 26491221 PMCID: PMC4605361 DOI: 10.1155/2015/168937] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 01/23/2023] Open
Abstract
Malaria is the most important parasitic disease worldwide, accounting for 1 million deaths each year. Severe malaria is a systemic illness characterized by dysfunction of brain tissue and of one or more peripheral organs as lungs and kidney. The most severe and most studied form of malaria is associated with cerebral complications due to capillary congestion and the adhesion of infected erythrocytes, platelets, and leukocytes to brain vasculature. Thus, leukocyte rolling and adhesion in the brain vascular bed during severe malaria is singular and distinct from other models of inflammation. The leukocyte/endothelium interaction and neutrophil accumulation are also observed in the lungs. However, lung interactions differ from brain interactions, likely due to differences in the blood-brain barrier and blood-air barrier tight junction composition of the brain and lung endothelium. Here, we review the importance of endothelial dysfunction and the mechanism of leukocyte/endothelium interaction during severe malaria. Furthermore, we hypothesize a possible use of adjunctive therapies to antimalarial drugs that target the interaction between the leukocytes and the endothelium.
Collapse
|
20
|
Amato B, Compagna R, Amato M, Grande R, Butrico L, Rossi A, Naso A, Ruggiero M, de Franciscis S, Serra R. Adult vascular wall resident multipotent vascular stem cells, matrix metalloproteinases, and arterial aneurysms. Stem Cells Int 2015; 2015:434962. [PMID: 25866513 PMCID: PMC4381852 DOI: 10.1155/2015/434962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/23/2015] [Accepted: 03/06/2015] [Indexed: 12/20/2022] Open
Abstract
Evidences have shown the presence of multipotent stem cells (SCs) at sites of arterial aneurysms: they can differentiate into smooth muscle cells (SMCs) and are activated after residing in a quiescent state in the vascular wall. Recent studies have implicated the role of matrix metalloproteinases in the pathogenesis of arterial aneurysms: in fact the increased synthesis of MMPs by arterial SMCs is thought to be a pivotal mechanism in aneurysm formation. The factors and signaling pathways involved in regulating wall resident SC recruitment, survival, proliferation, growth factor production, and differentiation may be also related to selective expression of different MMPs. This review explores the relationship between adult vascular wall resident multipotent vascular SCs, MMPs, and arterial aneurysms.
Collapse
Affiliation(s)
- Bruno Amato
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Rita Compagna
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Maurizio Amato
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Raffaele Grande
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Lucia Butrico
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Alessio Rossi
- Department of Medicine and Health Sciences, University of Molise, 88100 Campobasso, Italy
| | - Agostino Naso
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Michele Ruggiero
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano de Franciscis
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|