1
|
Burnouf T, Chou ML, Lundy DJ, Chuang EY, Tseng CL, Goubran H. Expanding applications of allogeneic platelets, platelet lysates, and platelet extracellular vesicles in cell therapy, regenerative medicine, and targeted drug delivery. J Biomed Sci 2023; 30:79. [PMID: 37704991 PMCID: PMC10500824 DOI: 10.1186/s12929-023-00972-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Platelets are small anucleated blood cells primarily known for their vital hemostatic role. Allogeneic platelet concentrates (PCs) collected from healthy donors are an essential cellular product transfused by hospitals to control or prevent bleeding in patients affected by thrombocytopenia or platelet dysfunctions. Platelets fulfill additional essential functions in innate and adaptive immunity and inflammation, as well as in wound-healing and tissue-repair mechanisms. Platelets contain mitochondria, lysosomes, dense granules, and alpha-granules, which collectively are a remarkable reservoir of multiple trophic factors, enzymes, and signaling molecules. In addition, platelets are prone to release in the blood circulation a unique set of extracellular vesicles (p-EVs), which carry a rich biomolecular cargo influential in cell-cell communications. The exceptional functional roles played by platelets and p-EVs explain the recent interest in exploring the use of allogeneic PCs as source material to develop new biotherapies that could address needs in cell therapy, regenerative medicine, and targeted drug delivery. Pooled human platelet lysates (HPLs) can be produced from allogeneic PCs that have reached their expiration date and are no longer suitable for transfusion but remain valuable source materials for other applications. These HPLs can substitute for fetal bovine serum as a clinical grade xeno-free supplement of growth media used in the in vitro expansion of human cells for transplantation purposes. The use of expired allogeneic platelet concentrates has opened the way for small-pool or large-pool allogeneic HPLs and HPL-derived p-EVs as biotherapy for ocular surface disorders, wound care and, potentially, neurodegenerative diseases, osteoarthritis, and others. Additionally, allogeneic platelets are now seen as a readily available source of cells and EVs that can be exploited for targeted drug delivery vehicles. This article aims to offer an in-depth update on emerging translational applications of allogeneic platelet biotherapies while also highlighting their advantages and limitations as a clinical modality in regenerative medicine and cell therapies.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - David J Lundy
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| |
Collapse
|
2
|
Delabie W, De Bleser D, Vandewalle V, Vandekerckhove P, Compernolle V, Feys HB. Single step method for high yield human platelet lysate production. Transfusion 2023; 63:373-383. [PMID: 36426732 PMCID: PMC10099704 DOI: 10.1111/trf.17188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND We aimed to develop a single step method for the production of human platelet lysate (hPL). The method must result in high hPL yields, be closed system and avoid heparin use. STUDY DESIGN AND METHODS The method aimed at using glass beads and calcium. An optimal concentration of calcium and glass beads was determined by serial dilution. This was translated to a novel method and compared to known methods: freeze-thawing and high calcium. Quality outcome measures were transmittance, fibrinogen and growth factor content, and cell doubling time. RESULTS An optimal concentration of 5 mM Ca2+ and 0.2 g/ml glass beads resulted in hPL with yields of 92% ± 1% (n = 50) independent of source material (apheresis or buffy coat-derived). The transmittance was highest (56% ± 9%) compared to known methods (<39%). The fibrinogen concentration (7.0 ± 1.1 μg/ml) was well below the threshold, avoiding the need for heparin. Growth factor content was similar across hPL production methods. The cell doubling time of adipose derived stem cells was 25 ± 1 h and not different across methods. Batch consistency was determined across six batches of hPL (each n = 25 constituting concentrates) and was <11% for all parameters including cell doubling time. Calcium precipitation formed after 4 days of culturing stem cells in media with hPL prepared by the high (15 mM) Ca2+ method, but not with hPL prepared by glass bead method. DISCUSSION The novel method transforms platelet concentrates to hPL with little hands-on time. The method results in high yield, is closed system, without heparin and non-inferior to published methods.
Collapse
Affiliation(s)
- Willem Delabie
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Dominique De Bleser
- Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Vicky Vandewalle
- Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Philippe Vandekerckhove
- Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium.,Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Global Health, Stellenbosch University, Stellenbosch, South Africa
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium.,Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
A comparative study of pathogen inactivation technologies in human platelet lysate and its optimal efficiency in human placenta-derived stem cells culture. J Virol Methods 2022; 302:114478. [DOI: 10.1016/j.jviromet.2022.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 11/22/2022]
|
4
|
Barro L, Delila L, Nebie O, Wu YW, Knutson F, Watanabe N, Takahara M, Burnouf T. Removal of minute virus of mice-mock virus particles by nanofiltration of culture growth medium supplemented with 10% human platelet lysate. Cytotherapy 2021; 23:902-907. [PMID: 34238658 DOI: 10.1016/j.jcyt.2021.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AIMS Platelet concentrates (PCs) are pooled to prepare human platelet lysate (HPL) supplements of growth media to expand primary human cells for transplantation; this increases the risk of contamination by known, emerging, and unknown viruses. This possibility should be of concern because viral contamination of cell cultures is difficult to detect and may have detrimental consequences for recipients of cell therapies. Viral reduction treatments of chemically defined growth media have been proposed, but they are not applicable when media contain protein supplements currently needed to expand primary cell cultures. Recently, we successfully developed a Planova 35NPlanova 20N nanofiltration sequence of growth media supplemented with two types of HPL. The nanofiltered medium was found to be suitable for mesenchymal Stromal cell (MSC) expansion. METHODS Herein, we report viral clearance achieved by this nanofiltration process used for assessing a new experimental model using non-infectious minute virus of mice-mock virus particle (MVM-MVP) and its quantification by an immunoqPCR. Then, high doses of MVM-MVP (1012 MVPs/mL) were spiked to obtain a final concentration of 1010 MVPs/mL in Planova 35N-nanofiltered growth medium supplemented with both types of HPLs [serum converted platelet lysate SCPL) and intercept human platelet lysate (I-HPL)] at 10% (v/v) and then filtering through Planova 20N. RESULTS No substantial interference of growth medium matrices by the immune-qPCR assay was first verified. Log reduction values (LRVs) were ≥ 5.43 and ≥ 5.36 respectively, SCPL and I-HPL media. MVM-MVPs were also undetectable by dynamic light scattering and transmission electron microscopy. CONCLUSIONS The nanofiltration of growth media supplemented with 10% HPL provides robust removal of small nonenveloped viruses, and is an option to improve the safety of therapeutic cells expanded using HPL supplements.
Collapse
Affiliation(s)
- Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | | | | | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International Program in Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Barro L, Nebie O, Chen MS, Wu YW, Koh MB, Knutson F, Watanabe N, Takahara M, Burnouf T. Nanofiltration of growth media supplemented with human platelet lysates for pathogen-safe xeno-free expansion of mesenchymal stromal cells. Cytotherapy 2020; 22:458-472. [PMID: 32536505 PMCID: PMC7205656 DOI: 10.1016/j.jcyt.2020.04.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/02/2023]
Abstract
Background aims Human platelet lysate can replace fetal bovine serum (FBS) for xeno-free ex vivo expansion of mesenchymal stromal cells (MSCs), but pooling of platelet concentrates (PCs) increases risks of pathogen transmission. We evaluated the feasibility of performing nanofiltration of platelet lysates and determined the impact on expansion of bone marrow–derived MSCs. Methods Platelet lysates were prepared by freeze-thawing of pathogen-reduced (Intercept) PCs suspended in 65% storage solution (SPP+) and 35% plasma, and by serum-conversion of PCs suspended in 100% plasma. Lysates were added to the MSC growth media at 10% (v/v), filtered and subjected to cascade nanofiltration on 35- and 19-nm Planova filters. Media supplemented with 10% starting platelet lysates or FBS were used as the controls. Impacts of nanofiltration on the growth media composition, removal of platelet extracellular vesicles (PEVs) and MSC expansion were evaluated. Results Nanofiltration did not detrimentally affect contents of total protein and growth factors or the biochemical composition. The clearance factor of PEVs was >3 log values. Expansion, proliferation, membrane markers, differentiation potential and immunosuppressive properties of cells in nanofiltered media were consistently better than those expanded in FBS-supplemented media. Compared with FBS, chondrogenesis and osteogenesis genes were expressed more in nanofiltered media, and there were fewer senescent cells over six passages. Conclusions Nanofiltration of growth media supplemented with two types of platelet lysates, including one prepared from pathogen-reduced PCs, is technically feasible. These data support the possibility of developing pathogen-reduced xeno-free growth media for clinical-grade propagation of human cells.
Collapse
Affiliation(s)
- Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ming-Sheng Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Mickey Bc Koh
- Department of Haematology, St George's University Hospitals Foundation NHS Trust, London, UK; Blood Sciences Group, Health Sciences Authority, Singapore
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | | | | | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International Program in Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Yoshikawa J, Shiota K, Horiguchi H. One-step Removal of Proteases in a Commercial Lactase Preparation from Kluyveromyces lactis Using an Anion-exchange Membrane. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jun Yoshikawa
- Enzymes and Pharmaceuticals Laboratory, GODO SHUSEI Co., Ltd
| | - Kazuma Shiota
- Enzymes and Pharmaceuticals Laboratory, GODO SHUSEI Co., Ltd
| | | |
Collapse
|
7
|
Extracellular Microvesicles as New Industrial Therapeutic Frontiers. Trends Biotechnol 2019; 37:707-729. [DOI: 10.1016/j.tibtech.2018.11.012] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022]
|
8
|
Barro L, Su YT, Nebie O, Wu YW, Huang YH, Koh MB, Knutson F, Burnouf T. A double-virally-inactivated (Intercept-solvent/detergent) human platelet lysate for in vitro expansion of human mesenchymal stromal cells. Transfusion 2019; 59:2061-2073. [PMID: 30912158 DOI: 10.1111/trf.15251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pooled human platelet lysate (HPL) can replace fetal bovine serum (FBS) as xeno-free supplement for ex vivo expansion of mesenchymal stromal cells (MSCs). We evaluate here whether a double-virally-inactivated HPL (DVI-HPL) prepared from expired Intercept-treated platelet concentrates (PCs) and treated by solvent/detergent (S/D) can be used for MSC expansion. STUDY DESIGN AND METHODS Expired Intercept-treated PCs in 65% platelet (PLT) additive solution were pooled and subjected to a 1% tri-n-butyl phosphate/1% Triton X-45 treatment followed by soybean oil, hydrophobic interaction chromatography purification, and sterile filtration. Bone marrow-derived MSCs (BM-MSCs) were expanded for four passages in growth medium containing 10% DVI-HPL, I-HPL (from Intercept-PC only), untreated HPL, and FBS. MSC morphology, doubling time, immunophenotype, immunosuppressive activity, and differentiation capacity were compared. RESULTS Expanded cells had typical spindle morphology and showed higher viability in all HPL conditions than in FBS. The DVI-HPL and FBS-expanded cells were morphologically larger than in I-HPL and HPL supplements. The cumulative population doubling was lower using DVI-HPL than with HPL and I-HPL, but significantly higher than using FBS. Immunophenotype was not affected by the supplements used. Immunosuppressive activity was maintained with all supplements. Differentiation capacity into chondrocytes and osteocytes was more effective in DVI-HPL but less toward adipocytes compared to other supplements. CONCLUSIONS Human PLT lysate made from Intercept-PCs subjected to S/D treatment may be an alternative to untreated HPL and to I-HPL for BM-MSC expansion. This finding reinforces the potential of HPL as a virally safe alternative to FBS for clinical grade MSC expansion protocols.
Collapse
Affiliation(s)
- Lassina Barro
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Su
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mickey Bc Koh
- Stem Cell Transplantation Programme, St. George's University Hospitals NHS Foundation Trust, Tooting, London, SW17 0QT, United Kingdom.,Cell Therapy Programme, Blood Services Group, Health Sciences Authority, Singapore
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | - Thierry Burnouf
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Chen MS, Wang TJ, Lin HC, Burnouf T. Four types of human platelet lysate, including one virally inactivated by solvent-detergent, can be used to propagate Wharton jelly mesenchymal stromal cells. N Biotechnol 2018; 49:151-160. [PMID: 30465908 DOI: 10.1016/j.nbt.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 11/09/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023]
Abstract
There is accumulating experimental evidence that human platelet lysate (HPL) made from platelet concentrates can replace fetal bovine serum (FBS) as a xeno-free clinical-grade supplement of growth media to expand mesenchymal stromal cells (MSCs). However, uncertainties exist in regard to impacts that various manufacturing methods of HPL can exert on the expansion and differentiation capacity of MSCs. In particular, there is a need to evaluate the possibility of implementing virus-inactivation treatment during HPL production to ensure optimal safety of industrial HPL pools. Expired human platelet concentrates from four different donors were pooled and subjected to freeze-thaw cycles (-80/+37 °C), followed or not by serum-conversion by calcium chloride, heat-treatment at 56 °C for 30 min, or solvent-detergent (S/D) virus inactivation. The concentrations of total proteins, growth factors and fibrinogen, and the chemical compositions of the HPLs were characterized. The impact of HPL supplementation on the cell morphology, doubling time, immunophenotype and trilineage differentiation capacity of Wharton jelly MSCs (WJMSCs) were compared over five passages, using FBS as a control and normalizing the protein content. Data showed that WJMSCs expanded equally well, exhibited a typical fibroblast morphology, had short doubling times, maintained their immunophenotypes, and differentiated into chondrocyte, osteocyte, and adipocyte lineages in all HPL-supplemented media, all of which were more effective than FBS. In conclusion, we found minimal detectable impact of the HPL manufacturing process, including S/D virus inactivation, on the suitability of expanding WJMSCs in vitro.
Collapse
Affiliation(s)
- Ming-Sheng Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Chen Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Clinical Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Strunk D, Lozano M, Marks DC, Loh YS, Gstraunthaler G, Schennach H, Rohde E, Laner-Plamberger S, Öller M, Nystedt J, Lotfi R, Rojewski M, Schrezenmeier H, Bieback K, Schäfer R, Bakchoul T, Waidmann M, Jonsdottir-Buch SM, Montazeri H, Sigurjonsson OE, Iudicone P, Fioravanti D, Pierelli L, Introna M, Capelli C, Falanga A, Takanashi M, López-Villar O, Burnouf T, Reems JA, Pierce J, Preslar AM, Schallmoser K. International Forum on GMP-grade human platelet lysate for cell propagation. Vox Sang 2017; 113:e1-e25. [PMID: 29071726 DOI: 10.1111/vox.12594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - D C Marks
- Australian Red Cross Blood Service, Research and Development, 17 O'Riordan Street, Sydney, New South Wales, 2015, Australia
| | - Y S Loh
- Australian Red Cross Blood Service, Research and Development, 17 O'Riordan Street, Sydney, New South Wales, 2015, Australia
| | - G Gstraunthaler
- Division of Physiology, Medical University Innsbruck, Schöpfstr. 41, Innsbruck, A-6020, Austria
| | - H Schennach
- Central Institute of Blood Transfusion and Immunology, University Hospital Innsbruck, Anichstr. 35, Innsbruck, A-6020, Austria
| | - E Rohde
- Department of Blood Group Serology and Transfusion Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Lindhofstrasse 20-22, Salzburg, 5020, Austria
| | - S Laner-Plamberger
- Department of Blood Group Serology and Transfusion Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Lindhofstrasse 20-22, Salzburg, 5020, Austria
| | - M Öller
- Department of Blood Group Serology and Transfusion Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Lindhofstrasse 20-22, Salzburg, 5020, Austria
| | - J Nystedt
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Kivihaantie 7, FI-00310, Helsinki, Finland
| | - R Lotfi
- Institute for Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Wuerttemberg-Hessen , University Hospital Ulm, University of Ulm, Helmholtzstr. 10, Ulm, 89081, Germany
| | - M Rojewski
- Institute for Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Wuerttemberg-Hessen , University Hospital Ulm, University of Ulm, Helmholtzstr. 10, Ulm, 89081, Germany
| | - H Schrezenmeier
- Institute for Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Wuerttemberg-Hessen , University Hospital Ulm, University of Ulm, Helmholtzstr. 10, Ulm, 89081, Germany
| | - K Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Heidelberg University, Friedrich-Ebert Str. 107, Mannheim, D-68167, Germany
| | - R Schäfer
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg- Hessen gGmbH, Goethe-University Hospital, Sandhofstrasse 1, Frankfurt am Main, D-60528, Germany
| | - T Bakchoul
- Center for Clinical Transfusion Medicine, Otfried-Müller-Strasse 4/1, D-72076 , Tuebingen, Germany
| | - M Waidmann
- Center for Clinical Transfusion Medicine, Otfried-Müller-Strasse 4/1, D-72076 , Tuebingen, Germany
| | - S M Jonsdottir-Buch
- The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101, Reykjavik, Iceland.,Platome Biotechnology, Alfaskeid 27, 220, Hafnarfjordur, Iceland
| | - H Montazeri
- The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 101, Reykjavik, Iceland.,Platome Biotechnology, Alfaskeid 27, 220, Hafnarfjordur, Iceland
| | - O E Sigurjonsson
- The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 101, Reykjavik, Iceland.,Platome Biotechnology, Alfaskeid 27, 220, Hafnarfjordur, Iceland.,School of Science and Engineering, University of Reykjavik, Menntavegur 1, 101, Reykjavik, Iceland
| | - P Iudicone
- San Camillo Forlanini Hospital, Circonvallazione Gianicolense 87, Rome, 00152, Italy
| | - D Fioravanti
- San Camillo Forlanini Hospital, Circonvallazione Gianicolense 87, Rome, 00152, Italy
| | - L Pierelli
- Department of Experimental Medicine, Sapienza University, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - M Introna
- QP USS Centro di Terapia Cellulare 'G. Lanzani', USC Ematologia, ASST Papa Giovanni XXIII, Via Garibaldi 11/13, Bergamo, 24124, Italy
| | - C Capelli
- USS Centro di Terapia Cellulare 'G. Lanzani', USC Ematologia, ASST Papa Giovanni XXIII, Via Garibaldi 11/13, Bergamo, 24124, Italy
| | - A Falanga
- Division of Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Piazza OMS 1, Bergamo, 24127, Italy
| | - M Takanashi
- Japanese Red Cross Blood Service Headquarters, 1-2-1 Shiba-koen, Minato-ku, Tokyo, 105-0011, Japan
| | - O López-Villar
- Department of Hematology, University Hospital of Salamanca, P/San Vicente 58-182, Salamanca, 37007, Spain
| | - T Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Shin Street, Taipei, 101, Taiwan
| | - J A Reems
- Division of Hematology and Hematologic Malignancies, Department of Medicine, University of Utah Cell Therapy and Regenerative Medicine, 675 Arapeen, Suite 300, Salt Lake City, Utah, 84108, USA
| | - J Pierce
- Division of Hematology and Hematologic Malignancies, Department of Medicine, University of Utah Cell Therapy and Regenerative Medicine, 675 Arapeen, Suite 300, Salt Lake City, Utah, 84108, USA
| | - A M Preslar
- Division of Hematology and Hematologic Malignancies, Department of Medicine, University of Utah Cell Therapy and Regenerative Medicine, 675 Arapeen, Suite 300, Salt Lake City, Utah, 84108, USA
| | | |
Collapse
|