1
|
Luo XH, Zhu Y, Duan XQ, Peng W, Pei CX, Yang L, Li Q, Zhao M, Wang L. Histone HIST1 genes and tumor-infiltrating lymphocytes in a child with γδ T cell acute lymphoblastic leukemia by single-cell sequencing. J Leukoc Biol 2025; 117:qiaf022. [PMID: 39973604 DOI: 10.1093/jleuko/qiaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/31/2024] [Accepted: 02/18/2025] [Indexed: 02/21/2025] Open
Abstract
γδ T cell acute lymphoblastic leukemia (γδ T-ALL) represents a rare subset of T-ALL and is correlated with high rates of induction failure, relapse, and increased mortality. γδ T-ALL lacks a biologically informed framework for guiding its classification and treatment strategies. In this report, we detail a case of child with γδ T-ALL who underwent induction chemotherapy and intensification treatment, followed by haploidentical hematopoietic stem cell transplantation. The patient achieved a clinical complete remission and remains minimal residual disease negative with chidamide maintenance post-transplantation. Single-cell RNA sequencing revealed a connection between histone HIST1 genes and γδ T-ALL and identified potential effector functions of γδ T cells in combating this leukemia. This case carries significant implications for managing γδ T-ALL, highlighting the relationship between histone modification patterns and γδ tumor-infiltrating lymphocytes in γδ T-ALL cells for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Xiao-Hua Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Yan Zhu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Xiao-Qin Duan
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Wen Peng
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Cai-Xia Pei
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Li Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Qing Li
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Min Zhao
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Lan Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| |
Collapse
|
2
|
Kenmogne VL, Takundwa MM, Nweke EE, Monchusi B, Dube P, Maher H, Du Toit J, Philip-Cherian V, Fru PN, Thimiri Govinda Raj DB. The first-in-Africa ex vivo drug sensitivity testing platform identifies novel drug combinations for South African leukaemia patient cohort. Sci Rep 2025; 15:9160. [PMID: 40097584 PMCID: PMC11914478 DOI: 10.1038/s41598-025-93634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
In South Africa, leukemia remains a major health concern, posing significant challenges in treatment due to its varied subtypes. There is an unmet need for a testing pipeline that can identify drug effects on patient samples in an ex-vivo setting. Using the pilot study with South African patient samples, this paper reports the development of a drug-sensitivity testing pipeline for studying the drug effects in leukemia patient-derived cells. Forty-one (41) patients with Acute myeloid leukemia (AML) (n = 7), Chronic myelogenous leukemia (CML) (n = 30), and Chronic lymphocytic leukemia (CLL) (n = 4) were recruited for this study. Thirty (30) FDA-approved drugs were utilized for single drug sensitivity screening (DSS) on leukemia patient-derived cells with drug concentrations (1-1000 nM). The single DSS showed a distinct sensitivity pattern with different profiles among patients of the same subtype, confirming the need for precision therapy. This study observed irinotecan, used in solid tumour treatment, demonstrated efficacy in PBMCs in many patient samples compared to conventional leukemia drugs such as nilotinib. For drug combination studies, ten clinically relevant drugs were selected and tested based on the results of single drug sensitivity tests. This pilot study marks a crucial stride towards revolutionizing leukemia treatment in South Africa through an innovative ex vivo drug sensitivity testing platform. This pioneering initiative forms the basis for tailored and effective treatment options holding promise for more personalized treatment. Further exploration and validation of these findings could significantly contribute to cancer precision medicine efforts in South Africa.
Collapse
MESH Headings
- Humans
- South Africa
- Female
- Male
- Middle Aged
- Pilot Projects
- Adult
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Aged
- Drug Screening Assays, Antitumor/methods
- Leukemia, Myeloid, Acute/drug therapy
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Irinotecan/pharmacology
- Irinotecan/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Leukemia/drug therapy
- Leukemia/pathology
- Cohort Studies
- Pyrimidines
Collapse
Affiliation(s)
- V L Kenmogne
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - M M Takundwa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - E E Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - B Monchusi
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - P Dube
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - H Maher
- Wits Donald Gordon Medical Centre, Johannesburg, South Africa
| | - J Du Toit
- Wits Donald Gordon Medical Centre, Johannesburg, South Africa
| | - V Philip-Cherian
- Department of Haematology, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa
| | - P N Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - D B Thimiri Govinda Raj
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa.
| |
Collapse
|
3
|
Glushkova S, Shelikhova L, Voronin K, Pershin D, Vedmedskaya V, Muzalevskii Y, Kazachenok A, Kurnikova E, Radygina S, Ilushina M, Khismatullina R, Maschan A, Maschan M. Impact of Natural Killer Cell-Associated Factors on Acute Leukemia Outcomes after Haploidentical Hematopoietic Stem Cell Transplantation with αβ T Cell Depletion in a Pediatric Cohort. Transplant Cell Ther 2024; 30:435.e1-435.e12. [PMID: 38278183 DOI: 10.1016/j.jtct.2024.01.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
The technique of αβ T cell depletion (αβTCD) is a well-established method of hematopoietic stem cell transplantation (HSCT) for children with acute leukemia owing to the low rates of graft-versus-host disease and nonrelapse mortality (NRM). The graft-versus-leukemia effect is generally ascribed to natural killer (NK) cells conserved within the graft. It is not known whether NK-related factors affect the outcome of αβTCD HSCT, however. The aim of this retrospective study was to explore the impact of NK alloreactivity (based on donor-recipient killer immunoglobulin-like receptor [KIR] mismatch), graft NK cell dose, and blood NK cell recovery on day +30 post-HSCT on the incidences of leukemia relapse and NRM. The pediatric acute leukemia cohort comprised 295 patients who underwent their first HSCT from a haploidentical donor in complete remission. During post hoc analysis, the total cohort was divided into subcohorts by diagnosis (acute lymphoblastic leukemia [ALL]/acute myeloid leukemia [AML]), NK alloreactivity prediction (KIR match/KIR mismatch), graft NK cell dose (less than versus greater than the median value), and blood NK cell recovery on day +30 post-HSCT (less than versus greater than the median value). We also investigated the influence of serotherapy (antithymocyte globulin [ATG] group) versus abatacept + tocilizumab combination [aba+toci] group) on relapse risk in the context of KIR mismatch. The risks of relapse and NRM were calculated by the cumulative risk method, and groups were compared using the Gray test. Multivariate analysis revealed no apparent impact of predicted NK alloreactivity or any other studied NK cell-related factors for the entire cohort. For patients with AML, a significantly higher relapse risk associated with high NK cell graft content on the background of no predicted KIR mismatch (P = .002) was shown. Multivariate analysis confirmed this finding (P = .018); on the other hand, for the KIR-mismatched patients, there was a trend toward a lower risk of relapse associated with high NK cell dose. The use of ATG was associated with a trend toward reduced relapse risk (P = .074) in the AML patients. There was no significant impact of NK-related factors in the ALL patients. Overall, the evaluated NK-related factors did not show a clear and straightforward correlation with the key outcomes of HSCT in our cohort of children with acute leukemia. In practice, the data support prioritization of KIR-mismatched donors for patients with AML. Importantly, a potential interaction of KIR ligand mismatch and NK cell content in the graft was identified. Indirect evidence suggests that additional cellular constituents of the graft could influence the function of NK cells after HSCT and affect their role as graft-versus-leukemia effectors.
Collapse
Affiliation(s)
- Svetlana Glushkova
- Laboratory of Transplantation Immunology and Immunotherapy, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
| | - Larisa Shelikhova
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Kirill Voronin
- Department of Statistics, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitriy Pershin
- Laboratory of Transplantation Immunology and Immunotherapy, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Viktoria Vedmedskaya
- Laboratory of Transplantation Immunology and Immunotherapy, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Yakov Muzalevskii
- Department of Transfusion Medicine, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexei Kazachenok
- Department of Transfusion Medicine, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena Kurnikova
- Department of Transfusion Medicine, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Svetlana Radygina
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maria Ilushina
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Rimma Khismatullina
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexei Maschan
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michael Maschan
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
4
|
Ba D, Li H, Liu R, Zhang P, Tang Y. Exploratory study on the efficacy of bortezomib combining mitoxantrone or CD22-CAR T therapy targeting CD19-negative relapse after CD19-CAR T cell therapy with a simpler cell-line-based model. Apoptosis 2023; 28:1534-1545. [PMID: 37243774 DOI: 10.1007/s10495-023-01853-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Target-negative relapse after CD19 chimeric antigen receptor engineered (CAR) T cell therapy for patients with B lineage acute lymphoblastic leukemia (B-ALL) presents limited treatment options with dismal outcomes. Although CD22-CAR T cells mediate similarly potent antineoplastic effects in patients with CD19dim or even CD19-negative relapse following CD19-directed immunotherapy, a high rate of relapse associated with diminished CD22 cell surface expression has also been observed. Therefore, it is unclear whether any other therapeutic options are available. Mitoxantrone has shown significant antineoplastic activity in patients with relapsed or refractory leukemia over the past decades, and in some cases, the addition of bortezomib to conventional chemotherapeutic agents has demonstrated improved response rates. However, whether this mitoxantrone and bortezomib combination therapy is effective for those patients who have relapsed B-ALL after receiving CD19-CAR T cell therapy remains to be elucidated. In this study, we established a cellular model system using a CD19-positive B-ALL cell line Nalm-6 to investigate the treatment options for CD19-negative relapsed B-ALL after CD19-CAR T cell therapy. In addition to CD22-CAR T therapy, we observed that the combination of bortezomib and mitoxantrone exhibited effective anti-leukemia activity in the CD19-negative Nalm-6 cell line by downregulating p-AKT and p-mTOR. These results suggest that this combination therapy is a possible option for target-negative refractory leukemia cells after CAR-T cell treatment.
Collapse
Affiliation(s)
- Diandian Ba
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Hongzhe Li
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Rongrong Liu
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Ping Zhang
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Yongmin Tang
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China.
| |
Collapse
|
5
|
Branella GM, Lee JY, Okalova J, Parwani KK, Alexander JS, Arthuzo RF, Fedanov A, Yu B, McCarty D, Brown HC, Chandrakasan S, Petrich BG, Doering CB, Spencer HT. Ligand-based targeting of c-kit using engineered γδ T cells as a strategy for treating acute myeloid leukemia. Front Immunol 2023; 14:1294555. [PMID: 38022523 PMCID: PMC10679681 DOI: 10.3389/fimmu.2023.1294555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The application of immunotherapies such as chimeric antigen receptor (CAR) T therapy or bi-specific T cell engager (BiTE) therapy to manage myeloid malignancies has proven more challenging than for B-cell malignancies. This is attributed to a shortage of leukemia-specific cell-surface antigens that distinguish healthy from malignant myeloid populations, and the inability to manage myeloid depletion unlike B-cell aplasia. Therefore, the development of targeted therapeutics for myeloid malignancies, such as acute myeloid leukemia (AML), requires new approaches. Herein, we developed a ligand-based CAR and secreted bi-specific T cell engager (sBite) to target c-kit using its cognate ligand, stem cell factor (SCF). c-kit is highly expressed on AML blasts and correlates with resistance to chemotherapy and poor prognosis, making it an ideal candidate for which to develop targeted therapeutics. We utilize γδ T cells as a cytotoxic alternative to αβ T cells and a transient transfection system as both a safety precaution and switch to remove alloreactive modified cells that may hinder successful transplant. Additionally, the use of γδ T cells permits its use as an allogeneic, off-the-shelf therapeutic. To this end, we show mSCF CAR- and hSCF sBite-modified γδ T cells are proficient in killing c-kit+ AML cell lines and sca-1+ murine bone marrow cells in vitro. In vivo, hSCF sBite-modified γδ T cells moderately extend survival of NSG mice engrafted with disseminated AML, but therapeutic efficacy is limited by lack of γδ T-cell homing to murine bone marrow. Together, these data demonstrate preclinical efficacy and support further investigation of SCF-based γδ T-cell therapeutics for the treatment of myeloid malignancies.
Collapse
Affiliation(s)
- Gianna M. Branella
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Jasmine Y. Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Jennifer Okalova
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Molecular Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Kiran K. Parwani
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Jordan S. Alexander
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Raquel F. Arthuzo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Andrew Fedanov
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Bing Yu
- Expression Therapeutics, Inc., Tucker, GA, United States
| | - David McCarty
- Expression Therapeutics, Inc., Tucker, GA, United States
| | | | - Shanmuganathan Chandrakasan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | | | - Christopher B. Doering
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Molecular Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - H. Trent Spencer
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Molecular Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| |
Collapse
|
6
|
Prejzner W, Piekoś O, Bełdzińska K, Sadowska-Klasa A, Zarzycka E, Bieniaszewska M, Lewandowski K, Zaucha JM. The role of daratumumab in relapsed/refractory CD38 positive acute leukemias-case report on three cases with a literature review. Front Oncol 2023; 13:1228481. [PMID: 37941558 PMCID: PMC10628456 DOI: 10.3389/fonc.2023.1228481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 11/10/2023] Open
Abstract
Primary refractory or relapsed T-cell acute lymphoblastic leukemia (T-ALL) and mixed phenotype myeloid/T-cell acute leukemia have dismal prognoses. New treatment approaches, preferably targeting specific leukemic aberrations to overcome resistance, are urgently needed. The bright expression of the CD38 antigen found in several cases of T-ALL led to an investigation into the role of anti-CD38 antibodies in the treatment of T-ALL. Here, we present three cases of resistant and relapsed T-ALL and myeloid/T-cell treated with daratumumab-based therapy, including venetoclax and bortezomib (Dara-Ven-Bor). All patients achieved complete remission, with minimal residual disease negativity within four weeks of treatment, allowing them to proceed to allogeneic hematopoietic cell transplantation. The toxicity of the triple schema was acceptable. Our patients and other cases reviewed here suggest that daratumumab combined with venetoclax and bortezomib may be a very effective and relatively safe salvage treatment, even in primary resistant T-ALL.
Collapse
Affiliation(s)
- Witold Prejzner
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdańsk, Poland
| | - Oliwia Piekoś
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdańsk, Poland
| | - Karolina Bełdzińska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdańsk, Poland
| | - Alicja Sadowska-Klasa
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdańsk, Poland
| | - Ewa Zarzycka
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdańsk, Poland
| | - Maria Bieniaszewska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdańsk, Poland
| | | | - Jan Maciej Zaucha
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
7
|
Becker SA, Petrich BG, Yu B, Knight KA, Brown HC, Raikar SS, Doering CB, Spencer HT. Enhancing the effectiveness of γδ T cells by mRNA transfection of chimeric antigen receptors or bispecific T cell engagers. Mol Ther Oncolytics 2023; 29:145-157. [PMID: 37387794 PMCID: PMC10300408 DOI: 10.1016/j.omto.2023.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
Adoptive cell therapy (ACT) utilizing γδ T cells is becoming a promising option for the treatment of cancer, because it offers an off-the-shelf allogeneic product that is safe, potent, and clinically effective. Approaches to engineer or enhance immune-competent cells for ACT, like expression of chimeric antigen receptors (CARs) or combination treatments with bispecific T cell engagers, have improved the specificity and cytotoxic potential of ACTs and have shown great promise in preclinical and clinical settings. Here, we test whether electroporation of γδ T cells with CAR or secreted bispecific T cell engager (sBite) mRNA is an effective approach to improve the cytotoxicity of γδ T cells. Using a CD19-specific CAR, approximately 60% of γδ T cells are modified after mRNA electroporation and these cells show potent anticancer activity in vitro and in vivo against two CD19-positive cancer cell lines. In addition, expression and secretion of a CD19 sBite enhances γδ T cell cytotoxicity, both in vitro and in vivo, and promotes killing of target cells by modified and unmodified γδ T cells. Taken together, we show that transient transfection of γδ T cells with CAR or sBite mRNA by electroporation can be an effective treatment platform as a cancer therapeutic.
Collapse
Affiliation(s)
- Scott A. Becker
- Molecular and System Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | | | - Bing Yu
- Expression Therapeutics, Inc, Tucker, GA, USA
| | - Kristopher A. Knight
- Molecular and System Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | | | - Sunil S. Raikar
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Christopher B. Doering
- Molecular and System Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - H. Trent Spencer
- Molecular and System Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
8
|
Zhang T, Wang J, Zhao A, Xia L, Jin H, Xia S, Shi T. The way of interaction between Vγ9Vδ2 T cells and tumor cells. Cytokine 2023; 162:156108. [PMID: 36527892 DOI: 10.1016/j.cyto.2022.156108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Immunotherapy has been a promising, emerging treatment for various cancers. Gamma delta (γδ) T cells own a T cell receptor composed of γ- and δ- chain and act as crucial players in the anti-tumor immune effect. Currently, Vγ9Vδ2 T cells, the predominate γδ T cell subset in human peripheral blood, has been shown to exert multiple biological functions. In addition, a growing body of evidence notes that Vγ9Vδ2 T cells interact with tumor cells in many ways, such as TCR-mediated nonpeptidic-phosphorylated phosphoantigens (pAgs) recognization, NKG2D/NKG2D ligand (NKG2DL) pathway, Fas-FasL axis and antibody-dependent cellular cytotoxicity (ADCC) as well as exosome. More importantly, clinical studies with Vγ9Vδ2 T cells in cancers have propelled several clinical applications to investigate their safety and efficacy. Herein, this review summarized the underlying ways and mechanisms of interplay cancer cells and Vγ9Vδ2 T cells, which may help us to generate new strategies for tumor immunotherapy in the future.
Collapse
Affiliation(s)
- Ting Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China; Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Anjing Zhao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Lu Xia
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Haiyan Jin
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Suhua Xia
- Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.
| |
Collapse
|
9
|
Giannotta C, Autino F, Massaia M. Vγ9Vδ2 T-cell immunotherapy in blood cancers: ready for prime time? Front Immunol 2023; 14:1167443. [PMID: 37143664 PMCID: PMC10153673 DOI: 10.3389/fimmu.2023.1167443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
In the last years, the tumor microenvironment (TME) has emerged as a promising target for therapeutic interventions in cancer. Cancer cells are highly dependent on the TME to growth and evade the immune system. Three major cell subpopulations are facing each other in the TME: cancer cells, immune suppressor cells, and immune effector cells. These interactions are influenced by the tumor stroma which is composed of extracellular matrix, bystander cells, cytokines, and soluble factors. The TME can be very different depending on the tissue where cancer arises as in solid tumors vs blood cancers. Several studies have shown correlations between the clinical outcome and specific patterns of TME immune cell infiltration. In the recent years, a growing body of evidence suggests that unconventional T cells like natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, and γδ T cells are key players in the protumor or antitumor TME commitment in solid tumors and blood cancers. In this review, we will focus on γδ T cells, especially Vγ9Vδ2 T cells, to discuss their peculiarities, pros, and cons as potential targets of therapeutic interventions in blood cancers.
Collapse
Affiliation(s)
- Claudia Giannotta
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università Degli Studi di Torino, Torino, Italy
| | - Federica Autino
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università Degli Studi di Torino, Torino, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università Degli Studi di Torino, Torino, Italy
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S. Croce e Carle, Cuneo, Italy
- *Correspondence: Massimo Massaia,
| |
Collapse
|
10
|
Li P, Chen X, Zhou S, Xia X, Wang E, Han R, Zeng D, Fei G, Wang R. High Expression of DEPDC1B Predicts Poor Prognosis in Lung Adenocarcinoma. J Inflamm Res 2022; 15:4171-4184. [PMID: 35912402 PMCID: PMC9332445 DOI: 10.2147/jir.s369219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Lung adenocarcinoma (LUAD) is the most common type of lung cancer. DEP domain-containing 1 B (DEPDC1B) is involved in the development of several cancers; however, its role in LUAD is unknown. Therefore, we aimed to determine the biological function and prognostic value of DEPDC1B in LUAD. Material and Methods We analyzed the correlation between DEPDC1B expression and the clinical features of LUAD and lung squamous cell carcinoma (LUSC). Survival was evaluated by generating Kaplan-Meier curves, which were used to analyze the relationship between DEPDC1B expression and prognosis in LUAD and LUSC. DEPDC1B expression in tumor and normal tissues from patients with LUAD and LUSC was determined using immunohistochemistry, and its clinical significance was analyzed. Finally, the correlation between the expression and biological function of DEPDC1B in LUAD was examined. Results Our findings revealed that DEPDC1B expression was higher in tumor tissues than that in normal tissues from patients with LUAD and LUSC (P < 0.001). These results were confirmed in clinical samples from patients using immunohistochemistry. Analysis of a dataset from The Cancer Genome Atlas (TCGA) showed that high DEPDC1B expression was associated with poor prognosis only in patients with LUAD (P < 0.001). Similarly, high DEPDC1B expression was related to shorter overall survival (OS) and progression-free interval (PFI) in patients with LUAD. These associations were not observed in LUSC. Functional enrichment analysis suggested that DEPDC1B promoted tumor development in LUAD by regulating the cell cycle. Conclusion High DEPDC1B expression predicts poor prognosis in patients with LUAD. Thus, DEPDC1B has potential as a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Pulin Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Xiaojuan Chen
- Department of Infectious Diseases, Hefei Second People's Hospital, Hefei, People's Republic of China
| | - Sijing Zhou
- Department of Occupational Medicine, Hefei Third Clinical College of Anhui Medical University, Hefei, People's Republic of China
| | - Xingyuan Xia
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Enze Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Rui Han
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Daxiong Zeng
- Department of Pulmonary and Critical Care Medicine, Suzhou Dushu Lake Hospital, Suzhou, People's Republic of China.,Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, People's Republic of China
| | - Guanghe Fei
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
11
|
Allegra A, Casciaro M, Lo Presti E, Musolino C, Gangemi S. Harnessing Unconventional T Cells and Innate Lymphoid Cells to Prevent and Treat Hematological Malignancies: Prospects for New Immunotherapy. Biomolecules 2022; 12:biom12060754. [PMID: 35740879 PMCID: PMC9221132 DOI: 10.3390/biom12060754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
Unconventional T cells and innate lymphoid cells (ILCs) make up a heterogeneous set of cells that characteristically show prompt responses toward specific antigens. Unconventional T cells recognize non-peptide antigens, which are bound and presented by diverse non-polymorphic antigen-presenting molecules and comprise γδ T cells, MR1-restricted mucosal-associated invariant T cells (MAITs), and natural killer T cells (NKTs). On the other hand, ILCs lack antigen-specific receptors and act as the innate counterpart to the T lymphocytes found in the adaptive immune response. The alteration of unconventional T cells and ILCs in frequency and functionality is correlated with the onset of several autoimmune diseases, allergy, inflammation, and tumor. However, depending on the physio-pathological framework, unconventional T cells may exhibit either protective or pathogenic activity in a range of neoplastic diseases. Nonetheless, experimental models and clinical studies have displayed that some unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic markers. In fact, cell-mediated immune response in tumors has become the focus in immunotherapy against neoplastic disease. This review concentrates on the present knowledge concerning the function of unconventional T cell sets in the antitumor immune response in hematological malignancies, such as acute and chronic leukemia, multiple myeloma, and lymphoproliferative disorders. Moreover, we discuss the possibility that modulating the activity of unconventional T cells could be useful in the treatment of hematological neoplasms, in the prevention of specific conditions (such as graft versus host disease), and in the formulation of an effective anticancer vaccine therapy. The exact knowledge of the role of these cells could represent the prerequisite for the creation of a new form of immunotherapy for hematological neoplasms.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Marco Casciaro
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-221-2013
| | - Elena Lo Presti
- National Research Council (CNR)—Institute for Biomedical Research and Innovation (IRIB), 90146 Palermo, Italy;
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
12
|
Jones AB, Rocco A, Lamb LS, Friedman GK, Hjelmeland AB. Regulation of NKG2D Stress Ligands and Its Relevance in Cancer Progression. Cancers (Basel) 2022; 14:2339. [PMID: 35565467 PMCID: PMC9105350 DOI: 10.3390/cancers14092339] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Under cellular distress, multiple facets of normal homeostatic signaling are altered or disrupted. In the context of the immune landscape, external and internal stressors normally promote the expression of natural killer group 2 member D (NKG2D) ligands that allow for the targeted recognition and killing of cells by NKG2D receptor-bearing effector populations. The presence or absence of NKG2D ligands can heavily influence disease progression and impact the accessibility of immunotherapy options. In cancer, tumor cells are known to have distinct regulatory mechanisms for NKG2D ligands that are directly associated with tumor progression and maintenance. Therefore, understanding the regulation of NKG2D ligands in cancer will allow for targeted therapeutic endeavors aimed at exploiting the stress response pathway. In this review, we summarize the current understanding of regulatory mechanisms controlling the induction and repression of NKG2D ligands in cancer. Additionally, we highlight current therapeutic endeavors targeting NKG2D ligand expression and offer our perspective on considerations to further enhance the field of NKG2D ligand biology.
Collapse
Affiliation(s)
- Amber B. Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Abbey Rocco
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | | | - Gregory K. Friedman
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
13
|
Qiu D, Liu X, Wang W, Jiang X, Wu X, Zheng J, Zhou K, Kong X, Wu X, Jin Z. TIGIT axis: novel immune checkpoints in anti-leukemia immunity. Clin Exp Med 2022; 23:165-174. [PMID: 35419661 DOI: 10.1007/s10238-022-00817-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 12/01/2022]
Abstract
Hematologic malignancy evades immune-mediated recognition through upregulating various checkpoint inhibitory receptors (IRs) on several types of lymphocytes. Immunotherapies targeting IRs have provided ample evidence supporting regulating innate and adaptive immunity and obtaining clinical benefits. Newly described IRs have received considerable attention and are under investigation in cancer immunotherapy. Specifically, T cell immunoglobulin and ITIM domain is a novel inhibitory checkpoint receptor, and its immune checkpoint axis includes additional receptors such as CD96 and CD226, which are very promising targets. However, how the dynamics and functions of these receptor networks remain unknown, this review addresses the recent findings of the relevance of this complex receptor-ligand system and discusses their potential approaches in translating these preclinical findings into novel clinical agents in anti-leukemia immunotherapy.
Collapse
Affiliation(s)
- Dan Qiu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaxin Liu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wandi Wang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xuan Jiang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaofang Wu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiamian Zheng
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Kai Zhou
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xueting Kong
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiuli Wu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Zhenyi Jin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Gamma/Delta (γδ) T Cells: The Role of the T-Cell Receptor in Diagnosis and Prognosis of Hematologic Malignancies. Am J Dermatopathol 2022; 44:237-248. [PMID: 35287137 DOI: 10.1097/dad.0000000000002041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT There are 2 types of T cells: αβ and γδ T cells, named based on the composition of the T-cell receptor. γδ T cells are rare, making up 0.5%-10% of T cells. Although most leukemias, lymphomas, and immune-mediated conditions derive from αβ T cells, a handful of rare but important diseases are generally derived from γδ T cells, particularly primary cutaneous γδ T-cell lymphoma, hepatosplenic T-cell lymphoma, and monomorphic epitheliotropic intestinal T-cell lymphoma. There are also malignancies that may evince a γδ TCR phenotype, including large granulocytic lymphocyte leukemia, T-cell acute lymphobplastic leukemia (T-ALL), and mycosis fungoides, although such cases are rare. In this article, we will review the genesis of the T-cell receptor, the role of γδ T cells, and the importance of TCR type and methods of detection and outline the evidence for prognostic significance (or lack thereof) in lymphomas of γδ T cells. We will also highlight conditions that rarely may present with a γδ TCR phenotype and assess the utility of testing for TCR type in these diseases.
Collapse
|
15
|
Jonus HC, Burnham RE, Ho A, Pilgrim AA, Shim J, Doering CB, Spencer HT, Goldsmith KC. Dissecting the cellular components of ex vivo γδ T cell expansions to optimize selection of potent cell therapy donors for neuroblastoma immunotherapy trials. Oncoimmunology 2022; 11:2057012. [PMID: 35371623 PMCID: PMC8966991 DOI: 10.1080/2162402x.2022.2057012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
γδ T lymphocytes represent an emerging class of cellular immunotherapy with preclinical promise to treat cancer, notably neuroblastoma. The innate-like immune cell subset demonstrates inherent cytoxicity toward tumor cells independent of MHC recognition, enabling allogeneic administration of healthy donor-derived γδ T cell therapies. A current limitation is the substantial interindividual γδ T cell expansion variation among leukocyte collections. Overcoming this limitation will enable realization of the full potential of allogeneic γδ T-based cellular therapy. Here, we characterize γδ T cell expansions from healthy adult donors and observe that highly potent natural killer (NK) lymphocytes expand with γδ T cells under zoledronate and IL-2 stimulation. The presence of NK cells correlates with both the expansion potential of γδ T cells and the overall potency of the γδ T cell therapy. However, the potency of the cell therapy in combination with an antibody-based immunotherapeutic, dinutuximab, appears to be independent of γδ T/NK cell content both in vitro and in vivo, which minimizes the implication of interindividual expansion differences toward efficacy. Collectively, these studies highlight the utility of maintaining the NK cell population within expanded γδ T cell therapies and suggest a synergistic action of combined innate cell immunotherapy toward neuroblastoma.
Collapse
Affiliation(s)
- Hunter C. Jonus
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca E. Burnham
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew Ho
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Adeiye A. Pilgrim
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jenny Shim
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pediatric Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Christopher B. Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - H. Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Kelly C. Goldsmith
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Division of Pediatric Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
16
|
Jhita N, Raikar SS. Allogeneic gamma delta T cells as adoptive cellular therapy for hematologic malignancies. EXPLORATION OF IMMUNOLOGY 2022; 2:334-350. [PMID: 35783107 PMCID: PMC9249101 DOI: 10.37349/ei.2022.00054] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/28/2022] [Indexed: 05/22/2023]
Abstract
Cancer immunotherapy, especially T-cell driven targeting, has significantly evolved and improved over the past decade, paving the way to treat previously refractory cancers. Hematologic malignancies, given their direct tumor accessibility and less immunosuppressive microenvironment compared to solid tumors, are better suited to be targeted by cellular immunotherapies. Gamma delta (γδ) T cells, with their unique attributes spanning the entirety of the immune system, make a tantalizing therapeutic platform for cancer immunotherapy. Their inherent anti-tumor properties, ability to act like antigen-presenting cells, and the advantage of having no major histocompatibility complex (MHC) restrictions, allow for greater flexibility in their utility to target tumors, compared to their αβ T cell counterpart. Their MHC-independent anti-tumor activity, coupled with their ability to be easily expanded from peripheral blood, enhance their potential to be used as an allogeneic product. In this review, the potential of utilizing γδ T cells to target hematologic malignancies is described, with a specific focus on their applicability as an allogeneic adoptive cellular therapy product.
Collapse
Affiliation(s)
| | - Sunil S. Raikar
- Correspondence: Sunil S. Raikar, Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA.
| |
Collapse
|
17
|
Dong C, Zhang N, Zhang L. The Multi-Omic Prognostic Model of Oxidative Stress-Related Genes in Acute Myeloid Leukemia. Front Genet 2021; 12:722064. [PMID: 34659343 PMCID: PMC8514868 DOI: 10.3389/fgene.2021.722064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Acute myeloid leukemia (AML) is one of the most common cancers in the world, and oxidative stress is closely related to leukemia. A lot of effort has been made to improve the prognosis of AML. However, the situation remains serious. Hence, we focused on the study of prognostic genes in AML. Materials and Methods: Prognostic oxidative stress genes were screened out. The gene expression profile of AML patients was downloaded from the The Cancer Genome Atlas (TCGA) database. The oxidative stress-related model was constructed, by which the prognosis of AML patients was predicted using the two GEO GSE23143 datasets and the stability of the GSE71014 authentication model. Results: The prognostic oxidative stress genes were screened out in AML, and the prognostic genes were significantly enriched in a large number of pathways based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. There was a complex interaction between prognostic genes and transcription factors. After constructing the prediction model, the clinical predictive value of the model was discussed in a multi-omic study. We investigated the sensitivity of risk score to common chemotherapeutic agents, the influence of signaling pathways on the prognosis of AML patients, and the correlation of multiple genes with immune score and immune dysfunction. Conclusions: A highly effective prognostic risk model for AML patients was established and validated. The association of prognostic oxidative stress genes with drug sensitivity, signaling pathways, and immune infiltration was explored. The results suggested that oxidative stress genes promised to be potential prognostic biomarkers for AML, which may provide a new basis for disease management.
Collapse
Affiliation(s)
- Chao Dong
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Naijin Zhang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lijun Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Miyashita M, Shimizu T, Ashihara E, Ukimura O. Strategies to Improve the Antitumor Effect of γδ T Cell Immunotherapy for Clinical Application. Int J Mol Sci 2021; 22:8910. [PMID: 34445615 PMCID: PMC8396358 DOI: 10.3390/ijms22168910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
Human γδ T cells show potent cytotoxicity against various types of cancer cells in a major histocompatibility complex unrestricted manner. Phosphoantigens and nitrogen-containing bisphosphonates (N-bis) stimulate γδ T cells via interaction between the γδ T cell receptor (TCR) and butyrophilin subfamily 3 member A1 (BTN3A1) expressed on target cells. γδ T cell immunotherapy is classified as either in vivo or ex vivo according to the method of activation. Immunotherapy with activated γδ T cells is well tolerated; however, the clinical benefits are unsatisfactory. Therefore, the antitumor effects need to be increased. Administration of γδ T cells into local cavities might improve antitumor effects by increasing the effector-to-target cell ratio. Some anticancer and molecularly targeted agents increase the cytotoxicity of γδ T cells via mechanisms involving natural killer group 2 member D (NKG2D)-mediated recognition of target cells. Both the tumor microenvironment and cancer stem cells exert immunosuppressive effects via mechanisms that include inhibitory immune checkpoint molecules. Therefore, co-immunotherapy with γδ T cells plus immune checkpoint inhibitors is a strategy that may improve cytotoxicity. The use of a bispecific antibody and chimeric antigen receptor might be effective to overcome current therapeutic limitations. Such strategies should be tested in a clinical research setting.
Collapse
Affiliation(s)
- Masatsugu Miyashita
- Department of Urology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.S.); (O.U.)
- Department of Urology, Japanese Red Cross Kyoto Daini Hospital, Kyoto 602-8026, Japan
| | - Teruki Shimizu
- Department of Urology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.S.); (O.U.)
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan;
| | - Osamu Ukimura
- Department of Urology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.S.); (O.U.)
| |
Collapse
|