1
|
Sima H, Shao W. Advancements in the design and function of bispecific CAR-T cells targeting B Cell-Associated tumor antigens. Int Immunopharmacol 2024; 142:113166. [PMID: 39298818 DOI: 10.1016/j.intimp.2024.113166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Single-targeted CAR-T has exhibited notable success in treating B-cell tumors, effectively improving patient outcomes. However, the recurrence rate among patients remains above fifty percent, primarily attributed to antigen escape and the diminished immune persistence of CAR-T cells. Over recent years, there has been a surge of interest in bispecific CAR-T cell therapies, marked by an increasing number of research articles and clinical applications annually. This paper undertakes a comprehensive review of influential studies on the design of bispecific CAR-T in recent years, examining their impact on bispecific CAR-T efficacy concerning disease classification, targeted antigens, and CAR design. Notable distinctions in antigen targeting within B-ALL, NHL, and MM are explored, along with an analysis of how CAR scFv, transmembrane region, hinge region, and co-stimulatory region design influence Bi-CAR-T efficacy across different tumors. The summary provided aims to serve as a reference for designing novel and improved CAR-Ts, facilitating more efficient treatment for B-cell malignant tumors.
Collapse
Affiliation(s)
- Helin Sima
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China.
| |
Collapse
|
2
|
Nolan-Stevaux O, Smith R. Logic-gated and contextual control of immunotherapy for solid tumors: contrasting multi-specific T cell engagers and CAR-T cell therapies. Front Immunol 2024; 15:1490911. [PMID: 39606234 PMCID: PMC11599190 DOI: 10.3389/fimmu.2024.1490911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
CAR-T cell and T cell engager therapies have demonstrated transformational efficacy against hematological malignancies, but achieving efficacy in solid tumors has been more challenging, in large part because of on-target/off-tumor toxicities and sub-optimal T cell anti-tumor cytotoxic functions. Here, we discuss engineering solutions that exploit biological properties of solid tumors to overcome these challenges. Using logic gates as a framework, we categorize the numerous approaches that leverage two inputs instead of one to achieve better cancer selectivity or efficacy in solid tumors with dual-input CAR-Ts or multi-specific TCEs. In addition to the "OR gate" and "AND gate" approaches that leverage dual tumor antigen targeting, we also review "contextual AND gate" technologies whereby continuous cancer-selective inputs such a pH, hypoxia, target density, tumor proteases, and immune-suppressive cytokine gradients can be creatively incorporated in therapy designs. We also introduce the notion of "output directionality" to distinguish dual-input strategies that mechanistically impact cancer cell killing or T cell fitness. Finally, we contrast the feasibility and potential benefits of the various approaches using CAR-T and TCE therapeutics and discuss why the promising "IF/THEN" and "NOT" gate types pertain more specifically to CAR-T therapies, but can also succeed by integrating both technologies.
Collapse
Affiliation(s)
| | - Richard Smith
- Cell Biology Research, Kite Pharma, Foster City, CA, United States
| |
Collapse
|
3
|
Taheri MM, Javan F, Poudineh M, Athari SS. CAR-NKT Cells in Asthma: Use of NKT as a Promising Cell for CAR Therapy. Clin Rev Allergy Immunol 2024; 66:328-362. [PMID: 38995478 DOI: 10.1007/s12016-024-08998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
NKT cells, unique lymphocytes bridging innate and adaptive immunity, offer significant potential for managing inflammatory disorders like asthma. Activating iNKT induces increasing IFN-γ, TGF-β, IL-2, and IL-10 potentially suppressing allergic asthma. However, their immunomodulatory effects, including granzyme-perforin-mediated cytotoxicity, and expression of TIM-3 and TRAIL warrant careful consideration and targeted approaches. Although CAR-T cell therapy has achieved remarkable success in treating certain cancers, its limitations necessitate exploring alternative approaches. In this context, CAR-NKT cells emerge as a promising approach for overcoming these challenges, potentially achieving safer and more effective immunotherapies. Strategies involve targeting distinct IgE-receptors and their interactions with CAR-NKT cells, potentially disrupting allergen-mast cell/basophil interactions and preventing inflammatory cytokine release. Additionally, targeting immune checkpoints like PDL-2, inducible ICOS, FASL, CTLA-4, and CD137 or dectin-1 for fungal asthma could further modulate immune responses. Furthermore, artificial intelligence and machine learning hold immense promise for revolutionizing NKT cell-based asthma therapy. AI can optimize CAR-NKT cell functionalities, design personalized treatment strategies, and unlock a future of precise and effective care. This review discusses various approaches to enhancing CAR-NKT cell efficacy and longevity, along with the challenges and opportunities they present in the treatment of allergic asthma.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyyed Shamsadin Athari
- Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
4
|
Han J, Zhang B, Zheng S, Jiang Y, Zhang X, Mao K. The Progress and Prospects of Immune Cell Therapy for the Treatment of Cancer. Cell Transplant 2024; 33:9636897241231892. [PMID: 38433349 PMCID: PMC10913519 DOI: 10.1177/09636897241231892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Immune cell therapy as a revolutionary treatment modality, significantly transformed cancer care. It is a specialized form of immunotherapy that utilizes living immune cells as therapeutic reagents for the treatment of cancer. Unlike traditional drugs, cell therapies are considered "living drugs," and these products are currently customized and require advanced manufacturing techniques. Although chimeric antigen receptor (CAR)-T cell therapies have received tremendous attention in the industry regarding the treatment of hematologic malignancies, their effectiveness in treating solid tumors is often restricted, leading to the emergence of alternative immune cell therapies. Tumor-infiltrating lymphocytes (TIL) cell therapy, cytokine-induced killer (CIK) cell therapy, dendritic cell (DC) vaccines, and DC/CIK cell therapy are designed to use the body's natural defense mechanisms to target and eliminate cancer cells, and usually have fewer side effects or risks. On the other hand, cell therapies, such as chimeric antigen receptor-T (CAR-T) cell, T cell receptor (TCR)-T, chimeric antigen receptor-natural killer (CAR-NK), or CAR-macrophages (CAR-M) typically utilize either autologous stem cells, allogeneic or xenogeneic cells, or genetically modified cells, which require higher levels of manipulation and are considered high risk. These high-risk cell therapies typically hold special characteristics in tumor targeting and signal transduction, triggering new anti-tumor immune responses. Recently, significant advances have been achieved in both basic and clinical researches on anti-tumor mechanisms, cell therapy product designs, and technological innovations. With swift technological integration and a high innovation landscape, key future development directions have emerged. To meet the demands of cell therapy technological advancements in treating cancer, we comprehensively and systematically investigate the technological innovation and clinical progress of immune cell therapies in this study. Based on the therapeutic mechanisms and methodological features of immune cell therapies, we analyzed the main technical advantages and clinical transformation risks associated with these therapies. We also analyzed and forecasted the application prospects, providing references for relevant enterprises with the necessary information to make informed decisions regarding their R&D direction selection.
Collapse
Affiliation(s)
- Jia Han
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Bowen Zhang
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Senyu Zheng
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, UK
| | - Yuan Jiang
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaopeng Zhang
- Shanghai World Trade Organization Affairs Consultation Center, Shanghai, China
| | - Kaiyun Mao
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Smith R. Bringing cell therapy to tumors: considerations for optimal CAR binder design. Antib Ther 2023; 6:225-239. [PMID: 37846297 PMCID: PMC10576856 DOI: 10.1093/abt/tbad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have revolutionized the immunotherapy of B-cell malignancies and are poised to expand the range of their impact across a broad range of oncology and non-oncology indications. Critical to the success of a given CAR is the choice of binding domain, as this is the key driver for specificity and plays an important role (along with the rest of the CAR structure) in determining efficacy, potency and durability of the cell therapy. While antibodies have proven to be effective sources of CAR binding domains, it has become apparent that the desired attributes for a CAR binding domain do differ from those of a recombinant antibody. This review will address key factors that need to be considered in choosing the optimal binding domain for a given CAR and how binder properties influence and are influenced by the rest of the CAR.
Collapse
Affiliation(s)
- Richard Smith
- Department of Research, Kite, a Gilead Company, 5858 Horton Street, Suite 240, Emeryville, CA 94070, USA
| |
Collapse
|
6
|
Lam N, Finney R, Yang S, Choi S, Wu X, Cutmore L, Andrade J, Huang L, Amatya C, Cam M, Kochenderfer JN. Development of a bicistronic anti-CD19/CD20 CAR construct including abrogation of unexpected nucleic acid sequence deletions. Mol Ther Oncolytics 2023; 30:132-149. [PMID: 37654973 PMCID: PMC10465854 DOI: 10.1016/j.omto.2023.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
To address CD19 loss from lymphoma after anti-CD19 chimeric antigen receptor (CAR) T cell therapy, we designed a bicistronic construct encoding an anti-CD19 CAR and an anti-CD20 CAR. We detected deletions from the expected bicistronic construct sequence in a minority of transcripts by mRNA sequencing. Loss of bicistronic construct transgene DNA was also detected. Deletions of sequence were present at much higher frequencies in transduced T cell mRNA versus gamma-retroviral vector RNA. We concluded that these deletions were caused by intramolecular template switching of the reverse transcriptase enzyme during reverse transcription of gamma-retroviral vector RNA into transgene DNA of transduced T cells. Intramolecular template switching was driven by repeated regions of highly similar nucleic acid sequence within CAR sequences. We optimized the sequence of the bicistronic CAR construct to reduce repeated regions of highly similar sequences. This optimization nearly eliminated sequence deletions. This work shows that repeated regions of highly similar nucleic acid sequence must be avoided in complex CAR constructs. We further optimized the bicistronic construct by lengthening the linker of the anti-CD20 single-chain variable fragment. This modification increased CD20-specific interleukin-2 release and reduced CD20-specific activation-induced cell death. We selected an optimized anti-CD19/CD20 bicistronic construct for clinical development.
Collapse
Affiliation(s)
- Norris Lam
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Richard Finney
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Office of the Director, Bethesda, MD, USA
| | - Shicheng Yang
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Stephanie Choi
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Lauren Cutmore
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | | | - Lei Huang
- Kite, A Gilead Company, Santa Monica, CA, USA
| | - Christina Amatya
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Margaret Cam
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Office of the Director, Bethesda, MD, USA
| | - James N. Kochenderfer
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| |
Collapse
|
7
|
Shen X, Zhang R, Nie X, Yang Y, Hua Y, Lü P. 4-1BB Targeting Immunotherapy: Mechanism, Antibodies, and Chimeric Antigen Receptor T. Cancer Biother Radiopharm 2023; 38:431-444. [PMID: 37433196 DOI: 10.1089/cbr.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
4-1BB (CD137, TNFRSF9) is a type I transmembrane protein which binds its natural ligand, 4-1BBL. This interaction has been exploited to improve cancer immunotherapy. With ligand binding by 4-1BB, the nuclear factor-kappa B signaling pathway is activated, which results in transcription of corresponding genes such as interleukin-2 and interferon-γ, as well as the induction of T cell proliferation and antiapoptotic signals. Moreover, monoclonal antibodies that target-4-1BB, for example, Urelumab and Utomilumab, are widely used in the treatments of B cell non-Hodgkin lymphoma, lung cancer, breast cancer, soft tissue sarcoma, and other solid tumors. Furthermore, 4-1BB as a costimulatory domain, for chimeric antigen receptor T (CAR-T) cells, improves T cell proliferation and survival as well as reduces T cell exhaustion. As such, a deeper understanding of 4-1BB will contribute to improvements in cancer immunotherapy. This review provides a comprehensive analysis of current 4-1BB studies, with a focus on the use of targeting-4-1BB antibodies and 4-1BB activation domains in CAR-T cells for the treatment of cancer.
Collapse
Affiliation(s)
- Xiaoling Shen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rusong Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaojuan Nie
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ye Hua
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Tserunyan V, Finley SD. A systems and computational biology perspective on advancing CAR therapy. Semin Cancer Biol 2023; 94:34-49. [PMID: 37263529 PMCID: PMC10529846 DOI: 10.1016/j.semcancer.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/24/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
In the recent decades, chimeric antigen receptor (CAR) therapy signaled a new revolutionary approach to cancer treatment. This method seeks to engineer immune cells expressing an artificially designed receptor, which would endue those cells with the ability to recognize and eliminate tumor cells. While some CAR therapies received FDA approval and others are subject to clinical trials, many aspects of their workings remain elusive. Techniques of systems and computational biology have been frequently employed to explain the operating principles of CAR therapy and suggest further design improvements. In this review, we sought to provide a comprehensive account of those efforts. Specifically, we discuss various computational models of CAR therapy ranging in scale from organismal to molecular. Then, we describe the molecular and functional properties of costimulatory domains frequently incorporated in CAR structure. Finally, we describe the signaling cascades by which those costimulatory domains elicit cellular response against the target. We hope that this comprehensive summary of computational and experimental studies will further motivate the use of systems approaches in advancing CAR therapy.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey D Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Wei N, Chen TP. [Recent research on chimeric antigen receptor T cells in children with refractory/relapsed acute lymphoblastic leukemia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:210-216. [PMID: 36854700 PMCID: PMC9979381 DOI: 10.7499/j.issn.1008-8830.2210056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/15/2022] [Indexed: 03/03/2023]
Abstract
At present, the treatment of refractory/relapsed acute lymphoblastic leukemia is still in a difficult situation, and even if the intensity of chemotherapy is increased or it is combined with hematopoietic stem cell transplantation, some children may have a poor prognosis and a short survival time. Chimeric antigen receptor T-cell (CAR-T) immunotherapy uses genetically engineered T cells and does not rely on the human leukocyte antigen pathway to recognize tumor-specific antigens, and then CAR-T cells bind to target antigen cells to trigger immune response, thereby exerting a sustained anti-leukemia effect. As the most rapidly developed tumor immunotherapy, major breakthroughs have been made for CAR-T cells in the treatment of various hematological tumors, but there still lacks a comprehensive system for the research, development, and production of CAR-T cells and standardized diagnosis and treatment protocols in China. This article reviews the recent research on CAR-T cells in children with refractory/relapsed acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Nan Wei
- Department of Hematology, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Tian-Ping Chen
- Department of Hematology, Anhui Provincial Children's Hospital, Hefei 230051, China
| |
Collapse
|
10
|
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7:331. [PMID: 36123348 PMCID: PMC9485144 DOI: 10.1038/s41392-022-01136-2] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.
Collapse
|
11
|
Roex G, Campillo-Davo D, Flumens D, Shaw PAG, Krekelbergh L, De Reu H, Berneman ZN, Lion E, Anguille S. Two for one: targeting BCMA and CD19 in B-cell malignancies with off-the-shelf dual-CAR NK-92 cells. J Transl Med 2022; 20:124. [PMID: 35287669 PMCID: PMC8919645 DOI: 10.1186/s12967-022-03326-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/01/2022] [Indexed: 01/04/2023] Open
Abstract
Abstract
Background
Chimeric antigen receptor (CAR) T-cell therapy has proven to be a valuable new treatment option for patients with B-cell malignancies. However, by applying selective pressure, outgrowth of antigen-negative tumor cells can occur, eventually resulting in relapse. Subsequent rescue by administration of CAR-T cells with different antigen-specificity indicates that those tumor cells are still sensitive to CAR-T treatment and points towards a multi-target strategy. Due to their natural tumor sensitivity and highly cytotoxic nature, natural killer (NK) cells are a compelling alternative to T cells, especially considering the availability of an off-the-shelf unlimited supply in the form of the clinically validated NK-92 cell line.
Methods
Given our goal to develop a flexible system whereby the CAR expression repertoire of the effector cells can be rapidly adapted to the changing antigen expression profile of the target cells, electrotransfection with CD19-/BCMA-CAR mRNA was chosen as CAR loading method in this study. We evaluated the functionality of mRNA-engineered dual-CAR NK-92 against tumor B-cell lines and primary patient samples. In order to test the clinical applicability of the proposed cell therapy product, the effect of irradiation on the proliferative rate and functionality of dual-CAR NK-92 cells was investigated.
Results
Co-electroporation of CD19 and BMCA CAR mRNA was highly efficient, resulting in 88.1% dual-CAR NK-92 cells. In terms of CD107a degranulation, and secretion of interferon (IFN)-γ and granzyme B, dual-CAR NK-92 significantly outperformed single-CAR NK-92. More importantly, the killing capacity of dual-CAR NK-92 exceeded 60% of single and dual antigen-expressing cell lines, as well as primary tumor cells, in a 4h co-culture assay at low effector to target ratios, matching that of single-CAR counterparts. Furthermore, our results confirm that dual-CAR NK-92 irradiated with 10 Gy cease to proliferate and are gradually cleared while maintaining their killing capacity.
Conclusions
Here, using the clinically validated NK-92 cell line as a therapeutic cell source, we established a readily accessible and flexible platform for the generation of highly functional dual-targeted CAR-NK cells.
Collapse
|
12
|
Zeng W, Zhang P. Resistance and recurrence of malignancies after CAR-T cell therapy. Exp Cell Res 2022; 410:112971. [PMID: 34906583 DOI: 10.1016/j.yexcr.2021.112971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022]
Abstract
The emergence of chimeric antigen receptor T (CAR-T) cell therapy has ushered a new era in cancer therapy, especially the treatment of hematological malignancies. However, resistance and recurrence still occur in some patients after CAR-T cell treatment. CAR-T cell inefficiency and tumor escape have emerged as the main challenges for the long-term disease control of B cell malignancies by this promising immunotherapy. In solid tumor treatment, CAR-T cells must also overcome many hurdles from the tumor or immune-suppressed tumor environment, which have become obstacles to the advancement of CAR-T therapy. Therefore, an understanding of the mechanisms underlying post-CAR treatment failure in patients is necessary. In this review, we characterize some mechanisms of resistance and recurrence after CAR-T cell therapy and correspondingly suggest reasonable treatment strategies.
Collapse
Affiliation(s)
- Wanying Zeng
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Pumin Zhang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Institute of Translational Medicine, Zhejiang University Medical School, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
13
|
Xie D, Jin X, Sun R, Zhang M, Wang J, Xiong X, Zhang X, Zhao M. Relapse Mechanism and Treatment Strategy After Chimeric Antigen Receptor T-Cell Therapy in Treating B-Cell Hematological Malignancies. Technol Cancer Res Treat 2022; 21:15330338221118413. [PMID: 35989682 PMCID: PMC9403467 DOI: 10.1177/15330338221118413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Over the past few decades, immunotherapy has revolutionized the modern medical oncology field. Chimeric antigen receptor (CAR)-T cell therapy has a promising curative effect in the treatment of hematological malignancies. Anti-CD19 CAR-T cells are the most mature CAR-T cells recently studied and in recent years it has achieved a complete remission rate of approximately 90% in the treatment of B-cell acute lymphoblastic leukemia (B-ALL). Although CAR-T cell therapy has greatly alleviated the disease in patients with leukemia or lymphoma, some of them still relapse after treatment. Therefore, in this article, we discuss the factors that may contribute to disease relapse following CAR-T cell therapy and summarize potential strategies to overcome these obstacles, thus providing the possibility of improving standard treatment regimens.
Collapse
Affiliation(s)
- Danni Xie
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xin Jin
- Department of Hematology, 66571Tianjin First Central Hospital, Tianjin, China
| | - Rui Sun
- 481107Nankai University School of Medicine, Tianjin, China
| | - Meng Zhang
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Jiaxi Wang
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xia Xiong
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xiaomei Zhang
- 481107Nankai University School of Medicine, Tianjin, China
| | - Mingfeng Zhao
- The First Central Clinical College of Tianjin Medical University, Tianjin, China.,Department of Hematology, 66571Tianjin First Central Hospital, Tianjin, China.,481107Nankai University School of Medicine, Tianjin, China
| |
Collapse
|
14
|
Heard A, Chang J, Warrington JM, Singh N. Advances in CAR design. Best Pract Res Clin Haematol 2021; 34:101304. [PMID: 34625230 DOI: 10.1016/j.beha.2021.101304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have revolutionized the management of B cell malignancies. These synthetic molecules are composed of peptide fragments from several distinct immune cell proteins and link highly-specific antigen recognition with potent T cell activation. Despite impressive results in many, less than half of patients treated will achieve durable remission after CAR therapy. Recent studies have identified the central role that each structural component of the CAR molecule plays in regulating T cell function. Significant effort has been dedicated to exploring strategies to improve the design of CARs themselves or integrate their activity with other regulatory circuits to enable more precise function. In this review, we will summarize recent pre-clinical and clinical studies that have evaluated novel CAR design formats.
Collapse
Affiliation(s)
- Amanda Heard
- Division of Oncology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Jufang Chang
- Division of Oncology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - John M Warrington
- Medical Scientist Training Program, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Nathan Singh
- Division of Oncology, Washington University School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|