1
|
Muthu S, Thangavel P, Duraisamy S, Jha SK, Ramanathan K, Alagar Yadav S, Ranjan R. Obese Patients Do Not Benefit from Bone Marrow Aspiration Concentrate Injection for Knee Osteoarthritis: A Prospective Cohort Study of 68 Patients. Indian J Orthop 2025; 59:92-100. [PMID: 39735869 PMCID: PMC11680530 DOI: 10.1007/s43465-024-01305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Bone marrow aspirate concentrate (BMAC) is considered one of the biological treatments for knee osteoarthritis (KOA). Patient selection remains a key factor to ensure that optimal treatment benefit and body mass index (BMI) are one of the key factors to be considered. This study aims to evaluate the influence of obesity on the duration of treatment benefit of BMAC for KOA. METHODS This prospective cohort study enrolled 68 patients who underwent a single BMAC injection for early stage KOA. The patients were categorized based on their BMI into normal, overweight, and obese groups. Visual Analog Scale (VAS) for pain and Knee Injury and Osteoarthritis Outcome Score (KOOS) were the outcomes analysed. The duration of treatment benefit is estimated by Kaplan-Meier survival analysis. RESULTS Sixty-eight patients (normal BMI = 43, overweight BMI = 15, obese BMI = 10) were enrolled in the study for analysis. While significant improvement in the outcome scores was noted compared to the baseline throughout the study period in the normal BMI and overweight group, the obese group returned to baseline parameters at 3 months follow-up. Patients in the normal BMI group demonstrated significant improvement in VAS (p < 0.001) and KOOS (p < 0.001) outcomes compared to the overweight and obese group. Survival analysis demonstrated a significant decline in the mean treatment benefit of 9.8 (95%CI [6.151-13.431], p = 0.027) months in normal BMI group to 6.6 (95%CI [3.473-9.727]) months and 4.1 (95%CI [2.760-5.440]) months in overweight and obese groups, respectively. CONCLUSION BMI is a significant factor that influences the benefit of BMAC injection for early knee OA. Hence, BMAC injection must be used with caution in individuals with high BMI.
Collapse
Affiliation(s)
- Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
- Department of Orthopaedics, Government Medical College, Dindigul, Tamil Nadu 624001 India
| | - Praveen Thangavel
- Department of Orthopaedics, Government Medical College, Karur, Tamil Nadu 639004 India
| | - Sivaraman Duraisamy
- Department of Orthopaedics, Government Medical College, Karur, Tamil Nadu 639004 India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, 110008 India
| | - Karthikraja Ramanathan
- Department of Orthopaedics, Government Medical College, Dindigul, Tamil Nadu 624001 India
| | - Sangilimuthu Alagar Yadav
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021 India
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310 India
| |
Collapse
|
2
|
Lana JF, de Brito GC, Kruel A, Brito B, Santos GS, Caliari C, Salamanna F, Sartori M, Barbanti Brodano G, Costa FR, Jeyaraman M, Dallo I, Bernaldez P, Purita J, de Andrade MAP, Everts PA. Evolution and Innovations in Bone Marrow Cellular Therapy for Musculoskeletal Disorders: Tracing the Historical Trajectory and Contemporary Advances. Bioengineering (Basel) 2024; 11:979. [PMID: 39451354 PMCID: PMC11504458 DOI: 10.3390/bioengineering11100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Bone marrow cellular therapy has undergone a remarkable evolution, significantly impacting the treatment of musculoskeletal disorders. This review traces the historical trajectory from early mythological references to contemporary scientific advancements. The groundbreaking work of Friedenstein in 1968, identifying fibroblast colony-forming cells in bone marrow, laid the foundation for future studies. Caplan's subsequent identification of mesenchymal stem cells (MSCs) in 1991 highlighted their differentiation potential and immunomodulatory properties, establishing them as key players in regenerative medicine. Contemporary research has focused on refining techniques for isolating and applying bone marrow-derived MSCs. These cells have shown promise in treating conditions like osteonecrosis, osteoarthritis, and tendon injuries thanks to their ability to promote tissue repair, modulate immune responses, and enhance angiogenesis. Clinical studies have demonstrated significant improvements in pain relief, functional recovery, and tissue regeneration. Innovations such as the ACH classification system and advancements in bone marrow aspiration methods have standardized practices, improving the consistency and efficacy of these therapies. Recent clinical trials have validated the therapeutic potential of bone marrow-derived products, highlighting their advantages in both surgical and non-surgical applications. Studies have shown that MSCs can reduce inflammation, support bone healing, and enhance cartilage repair. However, challenges remain, including the need for rigorous characterization of cell populations and standardized reporting in clinical trials. Addressing these issues is crucial for advancing the field and ensuring the reliable application of these therapies. Looking ahead, future research should focus on integrating bone marrow-derived products with other regenerative techniques and exploring non-surgical interventions. The continued innovation and refinement of these therapies hold promise for revolutionizing the treatment of musculoskeletal disorders, offering improved patient outcomes, and advancing the boundaries of medical science.
Collapse
Affiliation(s)
- José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
- Medical School, Jaguariúna University Center (UniFAJ), Jaguariúna 13820-000, SP, Brazil
| | - Gabriela Caponero de Brito
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - André Kruel
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Benjamim Brito
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Carolina Caliari
- Cell Therapy, In Situ Terapia Celular, Ribeirão Preto 14056-680, SP, Brazil;
| | - Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Instituto Ortopedizo Rizzoli, 40136 Bologna, Italy; (F.S.); (M.S.)
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS Instituto Ortopedizo Rizzoli, 40136 Bologna, Italy; (F.S.); (M.S.)
| | | | - Fábio Ramos Costa
- Department of Orthopaedics, FC Sports Traumatology, Salvador 40296-210, BA, Brazil;
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India;
- Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Clinical Research Scientist, Virginia Tech India, Chennai 600095, Tamil Nadu, India
| | - Ignácio Dallo
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Orthopedics, SportMe Medical Center, 41013 Seville, Spain;
| | | | - Joseph Purita
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
| | | | - Peter Albert Everts
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Gulf Coast Biologics, Fort Myers, FL 33916, USA
| |
Collapse
|
5
|
Muthu S, Jeyaraman M, Narula A, Ravi VR, Gandi A, Khanna M, Maffulli N, Gupta A. Factors Influencing the Yield of Progenitor Cells in Bone Marrow Aspiration Concentrate-A Retrospective Analysis of 58 Patients. Biomedicines 2023; 11:738. [PMID: 36979718 PMCID: PMC10045818 DOI: 10.3390/biomedicines11030738] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
This study aims to identify the role of subjective factors (age, sex, and comorbidities) and procedure-specific factors (aspiration volume) in influencing the yield of progenitor cells in bone marrow aspiration concentrate (BMAC) harvested from the iliac crest. A retrospective analysis was conducted on 58 patients (male:female = 31:27; mean age: 52.56 ± 18.14 years) who underwent BMAC therapy between January 2020 and June 2021. The factors analyzed include individual factors such as age, sex, and comorbid conditions, and procedural factors such as aspirate volume. The mononuclear cell (MNC) count and colony-forming unit (CFU) assay were used to assess the yield of progenitors in the aspirate. Pearson's correlation test was performed for the age, aspirate volume, and outcome parameters, such as MNC and CFU. We used the chi-square test to analyze the role of sex and comorbidities on cellular yield. The mean volume of aspirate used for BMAC therapy was 66.65 (±17.82) mL. The mean MNC count of the BMAC was 19.94 (±16.34) × 106 cells, which formed 11 (±12) CFUs. Evidence of statistically significant positive associations was noted between the CFUs developed from the BMAC and the MNC count within them (r = 0.95, p < 0.001). The sex of the individual did not play any significant role in MNC count (p = 0.092) or CFUs formed (p = 0.448). The age of the individual showed evidence of a statistically significant negative association with the MNC count (r = -0.681, p < 0.001) and CFUs (r = -0.693, p < 0.001), as did the aspiration volume with the MNC count (r = -0.740, p < 0.001) and CFUs (r = -0.629, p < 0.001). We also noted a significant reduction in the MNC count (p = 0.002) and CFUs formed (p = 0.004) when the patients presented comorbidities. Individual factors such as age, comorbid conditions, and procedure factors such as aspirate volume significantly affected the yield of progenitor cells in the BMAC. The sex of the individual did not influence the yield of progenitor cells in BMAC.
Collapse
Affiliation(s)
- Sathish Muthu
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624003, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. M.G.R. Educational and Research Institute, Chennai 600056, Tamil Nadu, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre (MCRC), Tiruchirappalli 620017, Tamil Nadu, India
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
| | - Aditya Narula
- Department of Orthopaedics, Aakaar Bone Care, Kanpur 208002, Uttar Pradesh, India
| | - V. R. Ravi
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre (MCRC), Tiruchirappalli 620017, Tamil Nadu, India
| | - Avinash Gandi
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre (MCRC), Tiruchirappalli 620017, Tamil Nadu, India
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, 84084 Fisciano, Italy
- San Giovanni di Dio e Ruggi D’Aragona Hospital “Clinica Ortopedica” Department, Hospital of Salerno, 84124 Salerno, Italy
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke on Trent ST5 5BG, UK
| | - Ashim Gupta
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
- Future Biologics, Lawrenceville, GA 30043, USA
- BioIntegrate, Lawrenceville, GA 30043, USA
- Regenerative Orthopaedics, Noida 201301, Uttar Pradesh, India
| |
Collapse
|