1
|
Ma W, Tang S, Yao P, Zhou T, Niu Q, Liu P, Tang S, Chen Y, Gan L, Cao Y. Advances in acute respiratory distress syndrome: focusing on heterogeneity, pathophysiology, and therapeutic strategies. Signal Transduct Target Ther 2025; 10:75. [PMID: 40050633 PMCID: PMC11885678 DOI: 10.1038/s41392-025-02127-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 03/09/2025] Open
Abstract
In recent years, the incidence of acute respiratory distress syndrome (ARDS) has been gradually increasing. Despite advances in supportive care, ARDS remains a significant cause of morbidity and mortality in critically ill patients. ARDS is characterized by acute hypoxaemic respiratory failure with diffuse pulmonary inflammation and bilateral edema due to excessive alveolocapillary permeability in patients with non-cardiogenic pulmonary diseases. Over the past seven decades, our understanding of the pathology and clinical characteristics of ARDS has evolved significantly, yet it remains an area of active research and discovery. ARDS is highly heterogeneous, including diverse pathological causes, clinical presentations, and treatment responses, presenting a significant challenge for clinicians and researchers. In this review, we comprehensively discuss the latest advancements in ARDS research, focusing on its heterogeneity, pathophysiological mechanisms, and emerging therapeutic approaches, such as cellular therapy, immunotherapy, and targeted therapy. Moreover, we also examine the pathological characteristics of COVID-19-related ARDS and discuss the corresponding therapeutic approaches. In the face of challenges posed by ARDS heterogeneity, recent advancements offer hope for improved patient outcomes. Further research is essential to translate these findings into effective clinical interventions and personalized treatment approaches for ARDS, ultimately leading to better outcomes for patients suffering from ARDS.
Collapse
Affiliation(s)
- Wen Ma
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Songling Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Yao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tingyuan Zhou
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Qingsheng Niu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Liu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyuan Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Chen
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Yu Cao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China.
| |
Collapse
|
2
|
Wang JF, Yang XX, Zhang J, Zheng Y, Zhang FQ, Shi XF, Wang YL. Immunomodulation of adipose-derived mesenchymal stem cells on peripheral blood mononuclear cells in colorectal cancer patients with COVID-19. World J Gastrointest Oncol 2024; 16:2113-2122. [PMID: 38764823 PMCID: PMC11099452 DOI: 10.4251/wjgo.v16.i5.2113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 03/07/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Accumulating evidence has shown that adipose tissue-derived mesenchymal stem cells (ADSCs) are an effective therapeutic approach for managing coronavirus disease 2019 (COVID-19); however, further elucidation is required to determine their underlying immunomodulatory effect on the mRNA expression of T helper cell-related transcription factors (TFs) and cytokine release in peripheral blood mononuclear cells (PBMCs). AIM To investigate the impact of ADSCs on the mRNA expression of TFs and cytokine release in PBMCs from colorectal cancer (CRC) patients with severe COVID-19 (CRC+ patients). METHODS PBMCs from CRC+ patients (PBMCs-C+) and age-matched CRC patients (PBMCs-C) were stimulated and cultured in the presence/absence of ADSCs. The mRNA levels of T-box TF TBX21 (T-bet), GATA binding protein 3 (GATA-3), RAR-related orphan receptor C (RORC), and forkhead box P3 (FoxP3) in the PBMCs were determined by reverse transcriptase-polymerase chain reaction. Culture supernatants were evaluated for levels of interferon gamma (IFN-γ), interleukin 4 (IL-4), IL-17A, and transforming growth factor beta 1 (TGF-β1) using an enzyme-linked immunosorbent assay. RESULTS Compared with PBMCs-C, PBMCs-C+ exhibited higher mRNA levels of T-bet and RORC, and increased levels of IFN-γ and IL-17A. Additionally, a significant decrease in FoxP3 mRNA and TGF-β1, as well as an increase in T-bet/GATA-3, RORC/FoxP3, IFN-γ/IL-4, and IL-17A/TGF-β1 ratios were observed in PBMCs-C+. Furthermore, ADSCs significantly induced a functional regulatory T cell (Treg) subset, as evidenced by an increase in FoxP3 mRNA and TGF-β1 release levels. This was accompanied by a significant decrease in the mRNA levels of T-bet and RORC, release of IFN-γ and IL-17A, and T-bet/GATA-3, RORC/FoxP3, IFN-γ/IL-4, and IL-17A/TGF-β1 ratios, compared with the PBMCs-C+alone. CONCLUSION The present in vitro studies showed that ADSCs contributed to the immunosuppressive effects on PBMCs-C+, favoring Treg responses. Thus, ADSC-based cell therapy could be a beneficial approach for patients with severe COVID-19 who fail to respond to conventional therapies.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xiao-Xia Yang
- Department of Neurology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Jian Zhang
- Prosthodontics Studio, Tianjin Stomatological Hospital, Tianjin 300041, China
| | - Yan Zheng
- Department of Clinical Laboratory Medicine, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Fu-Qing Zhang
- Department of Clinical Laboratory Medicine, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xiao-Feng Shi
- Department of Emergency, Tianjin First Central Hospital, Tianjin 300192, China
| | - Yu-Liang Wang
- Department of Clinical Laboratory Medicine, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
3
|
Levy E, Reilly JP. Pharmacologic Treatments in Acute Respiratory Failure. Crit Care Clin 2024; 40:275-289. [PMID: 38432696 DOI: 10.1016/j.ccc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Acute respiratory failure relies on supportive care using non-invasive and invasive oxygen and ventilatory support. Pharmacologic therapies for the most severe form of respiratory failure, acute respiratory distress syndrome (ARDS), are limited. This review focuses on the most promising therapies for ARDS, targeting different mechanisms that contribute to dysregulated inflammation and resultant hypoxemia. Significant heterogeneity exists within the ARDS population. Treatment requires prompt recognition of ARDS and an understanding of which patients may benefit most from specific pharmacologic interventions. The key to finding effective pharmacotherapies for ARDS may rely on deeper understanding of pathophysiology and bedside identification of ARDS subphenotypes.
Collapse
Affiliation(s)
- Elizabeth Levy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19146, USA
| | - John P Reilly
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19146, USA.
| |
Collapse
|
4
|
Leyfman Y, Emmanuel N, Menon GP, Joshi M, Wilkerson WB, Cappelli J, Erick TK, Park CH, Sharma P. Cancer and COVID-19: unravelling the immunological interplay with a review of promising therapies against severe SARS-CoV-2 for cancer patients. J Hematol Oncol 2023; 16:39. [PMID: 37055774 PMCID: PMC10100631 DOI: 10.1186/s13045-023-01432-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/25/2023] [Indexed: 04/15/2023] Open
Abstract
Cancer patients, due to their immunocompromised status, are at an increased risk for severe SARS-CoV-2 infection. Since severe SARS-CoV-2 infection causes multiple organ damage through IL-6-mediated inflammation while stimulating hypoxia, and malignancy promotes hypoxia-induced cellular metabolic alterations leading to cell death, we propose a mechanistic interplay between both conditions that results in an upregulation of IL-6 secretion resulting in enhanced cytokine production and systemic injury. Hypoxia mediated by both conditions results in cell necrosis, dysregulation of oxidative phosphorylation, and mitochondrial dysfunction. This produces free radicals and cytokines that result in systemic inflammatory injury. Hypoxia also catalyzes the breakdown of COX-1 and 2 resulting in bronchoconstriction and pulmonary edema, which further exacerbates tissue hypoxia. Given this disease model, therapeutic options are currently being studied against severe SARS-COV-2. In this study, we review several promising therapies against severe disease supported by clinical trial evidence-including Allocetra, monoclonal antibodies (Tixagevimab-Cilgavimab), peginterferon lambda, Baricitinib, Remdesivir, Sarilumab, Tocilizumab, Anakinra, Bevacizumab, exosomes, and mesenchymal stem cells. Due to the virus's rapid adaptive evolution and diverse symptomatic manifestation, the use of combination therapies offers a promising approach to decrease systemic injury. By investing in such targeted interventions, cases of severe SARS-CoV-2 should decrease along with its associated long-term sequelae and thereby allow cancer patients to resume their treatments.
Collapse
Affiliation(s)
- Yan Leyfman
- Icahn School of Medicine at Mount Sinai South Nassau, Rockville Centre, NY, USA
| | - Nancy Emmanuel
- Hospital das Clínicas of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | | | - Muskan Joshi
- Tbilisi State Medical University, Tbilisi, Georgia
| | | | | | | | | | - Pushpa Sharma
- Department of Anesthesiology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
5
|
Bowdish ME, Barkauskas CE, Overbey JR, Gottlieb RL, Osman K, Duggal A, Marks ME, Hupf J, Fernandes E, Leshnower BG, Golob JL, Iribarne A, Rassias AJ, Moquete EG, O’Sullivan K, Chang HL, Williams JB, Parnia S, Patel NC, Desai ND, Vekstein AM, Hollister BA, Possemato T, Romero C, Hou PC, Burke E, Hayes J, Grossman F, Itescu S, Gillinov M, Pagani FD, O’Gara PT, Mack MJ, Smith PK, Bagiella E, Moskowitz AJ, Gelijns AC. A Randomized Trial of Mesenchymal Stromal Cells for Moderate to Severe Acute Respiratory Distress Syndrome from COVID-19. Am J Respir Crit Care Med 2023; 207:261-270. [PMID: 36099435 PMCID: PMC9896641 DOI: 10.1164/rccm.202201-0157oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rationale: There are limited therapeutic options for patients with coronavirus disease (COVID-19)-related acute respiratory distress syndrome with inflammation-mediated lung injury. Mesenchymal stromal cells offer promise as immunomodulatory agents. Objectives: Evaluation of efficacy and safety of allogeneic mesenchymal cells in mechanically-ventilated patients with moderate or severe COVID-19-induced respiratory failure. Methods: Patients were randomized to two infusions of 2 million cells/kg or sham infusions, in addition to the standard of care. We hypothesized that cell therapy would be superior to sham control for the primary endpoint of 30-day mortality. The key secondary endpoint was ventilator-free survival within 60 days, accounting for deaths and withdrawals in a ranked analysis. Measurements and Main Results: At the third interim analysis, the data and safety monitoring board recommended that the trial halt enrollment as the prespecified mortality reduction from 40% to 23% was unlikely to be achieved (n = 222 out of planned 300). Thirty-day mortality was 37.5% (42/112) in cell recipients versus 42.7% (47/110) in control patients (relative risk [RR], 0.88; 95% confidence interval, 0.64-1.21; P = 0.43). There were no significant differences in days alive off ventilation within 60 days (median rank, 117.3 [interquartile range, 60.0-169.5] in cell patients and 102.0 [interquartile range, 54.0-162.5] in control subjects; higher is better). Resolution or improvement of acute respiratory distress syndrome at 30 days was observed in 51/104 (49.0%) cell recipients and 46/106 (43.4%) control patients (odds ratio, 1.36; 95% confidence interval, 0.57-3.21). There were no infusion-related toxicities and overall serious adverse events over 30 days were similar. Conclusions: Mesenchymal cells, while safe, did not improve 30-day survival or 60-day ventilator-free days in patients with moderate and/or severe COVID-19-related acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Michael E. Bowdish
- Department of Surgery and Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | | | - Keren Osman
- The Tisch Cancer Institute, Icahn School of Medicine, New York, New York
| | | | | | | | | | | | | | - Alexander Iribarne
- Section of Cardiac Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Athos J. Rassias
- Section of Cardiac Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | | | | | | - Judson B. Williams
- Cardiovascular Surgery, WakeMed Health and Hospitals, Raleigh, North Carolina
| | - Sam Parnia
- Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Nirav C. Patel
- Department of Cardiothoracic Surgery, Northwell Health, Manhasset, New York
| | - Nimesh D. Desai
- Cardiac Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew M. Vekstein
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University, Durham, North Carolina
| | - Beth A. Hollister
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University, Durham, North Carolina
| | - Tammie Possemato
- Department of Surgery and Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Christian Romero
- Department of Surgery and Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Peter C. Hou
- Division of Emergency Critical Care Medicine, Department of Emergency Medicine and
| | | | | | | | | | - Marc Gillinov
- Department of Thoracic & Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | | | - Patrick T. O’Gara
- Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | - Michael J. Mack
- Cardiac and Thoracic Surgery, Baylor Scott & White Health, Dallas, Texas
| | - Peter K. Smith
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University, Durham, North Carolina
| | | | | | | |
Collapse
|