1
|
Liu M, Sharma M, Lu G, Zhang Z, Song W, Wen J. Innovative Solid Lipid Nanoparticle-Enriched Hydrogels for Enhanced Topical Delivery of L-Glutathione: A Novel Approach to Anti-Ageing. Pharmaceutics 2024; 17:4. [PMID: 39861655 PMCID: PMC11768106 DOI: 10.3390/pharmaceutics17010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Skin ageing, driven predominantly by oxidative stress from reactive oxygen species (ROS) induced by environmental factors like ultraviolet A (UVA) radiation, accounts for approximately 80% of extrinsic skin damage. L-glutathione (GSH), a potent antioxidant, holds promise in combating UVA-induced oxidative stress. However, its instability and limited penetration through the stratum corneum hinder its topical application. This study introduces a novel solid lipid nanoparticle (SLN)-enriched hydrogel designed to enhance GSH stability, skin penetration, and sustained release for anti-ageing applications. Methods: GSH-loaded SLNs were prepared via a double-emulsion technique and optimized using factorial design. These SLNs were incorporated into 1-3% (w/v) Carbopol hydrogels to produce a semi-solid formulation. The hydrogel's characteristics, including morphology, mechanical and rheological properties, drug release, stability, antioxidant activity, cytotoxicity, and skin penetration, were evaluated. Results: SEM and FTIR confirmed the uniform dispersion of SLNs within the hydrogel. The formulation exhibited desirable properties, including gel strength (5.1 ± 0.5 g), spreadability (33.6 ± 1.9 g·s), pseudoplasticity, and elasticity. In vitro studies revealed a biphasic GSH release profile, with sustained release over 72 h and over 70% cumulative release. The hydrogel significantly improved antioxidant capacity, protecting human fibroblasts from UVA-induced oxidative stress and enhancing cell viability. Stability studies indicated that 4 °C was optimal for storage over three months. Notably, the hydrogel enhanced GSH penetration through the stratum corneum by 3.7-fold. Conclusions: This SLN-enriched hydrogel effectively improves GSH topical delivery and antioxidant efficacy, providing a promising platform for anti-ageing and other bioactive compounds with similar delivery challenges.
Collapse
Affiliation(s)
- Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (M.L.); (M.S.)
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (M.L.); (M.S.)
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1023, New Zealand
| | - Zhiwen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200433, China;
| | - Wenting Song
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (M.L.); (M.S.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
2
|
Castellani S, Iaconisi GN, Tripaldi F, Porcelli V, Trapani A, Messina E, Guerra L, Di Franco C, Maruccio G, Monteduro AG, Corbo F, Di Gioia S, Trapani G, Conese M. Dopamine and Citicoline-Co-Loaded Solid Lipid Nanoparticles as Multifunctional Nanomedicines for Parkinson's Disease Treatment by Intranasal Administration. Pharmaceutics 2024; 16:1048. [PMID: 39204393 PMCID: PMC11360708 DOI: 10.3390/pharmaceutics16081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
This work aimed to evaluate the potential of the nanosystems constituted by dopamine (DA) and the antioxidant Citicoline (CIT) co-loaded in solid lipid nanoparticles (SLNs) for intranasal administration in the treatment of Parkinson disease (PD). Such nanosystems, denoted as DA-CIT-SLNs, were designed according to the concept of multifunctional nanomedicine where multiple biological roles are combined into a single nanocarrier and prepared by the melt emulsification method employing the self-emulsifying Gelucire® 50/13 as lipid matrix. The resulting DA-CIT-SLNs were characterized regarding particle size, surface charge, encapsulation efficiency, morphology, and physical stability. Differential scanning calorimetry, FT-IR, and X ray diffraction studies were carried out to gain information on solid-state features, and in vitro release tests in simulated nasal fluid (SNF) were performed. Monitoring the particle size at two temperatures (4 °C and 37 °C), the size enlargement observed over the time at 37 °C was lower than that observed at 4 °C, even though at higher temperature, color changes occurred, indicative of possible neurotransmitter decomposition. Solid-state studies indicated a reduction in the crystallinity when DA and CIT are co-encapsulated in DA-CIT-SLNs. Interestingly, in vitro release studies in SNF indicated a sustained release of DA. Furthermore, DA-CIT SLNs displayed high cytocompatibility with both human nasal RPMI 2650 and neuronal SH-SY5Y cells. Furthermore, OxyBlot assay demonstrated considerable potential to assess the protective effect of antioxidant agents against oxidative cellular damage. Thus, such protective effect was shown by DA-CIT-SLNs, which constitute a promising formulation for PD application.
Collapse
Affiliation(s)
- Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Francesca Tripaldi
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.T.); (F.C.); (G.T.)
| | - Vito Porcelli
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (V.P.); (E.M.); (L.G.)
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.T.); (F.C.); (G.T.)
| | - Eugenia Messina
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (V.P.); (E.M.); (L.G.)
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (V.P.); (E.M.); (L.G.)
| | | | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento and INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy (A.G.M.)
- CNR-NANOTEC Institute of Nanotechnology, Via per Monteroni, 73100 Lecce, Italy
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento and INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy (A.G.M.)
- CNR-NANOTEC Institute of Nanotechnology, Via per Monteroni, 73100 Lecce, Italy
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.T.); (F.C.); (G.T.)
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.T.); (F.C.); (G.T.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| |
Collapse
|
3
|
Castellani S, Mallamaci R, De Giglio E, Caponio A, Guerra L, Fracchiolla G, Trapani G, Kristan K, Cardone RA, Passantino G, Zizzo N, Franzino G, Larobina D, Trapani A, Conese M. Slightly viscous dispersions of mucoadhesive polymers as vehicles for nasal administration of dopamine and grape seed extract-loaded solid lipid nanoparticles. Int J Pharm 2024; 659:124255. [PMID: 38782151 DOI: 10.1016/j.ijpharm.2024.124255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
With the aim to find an alternative vehicle to the most used thermosensitive hydrogels for efficient nanotechnology-based nose-to-brain delivery approach for Parkinson's disease (PD) treatment, in this work we evaluated the Dopamine (DA) and the antioxidant grape seed-derived pro-anthocyanidins (Grape Seed Extract, GSE) co-loaded solid lipid nanoparticles (SLNs) put in slight viscous dispersions (SVDs). These SVDs were prepared by dispersion in water at low concentrations of mucoadhesive polymers to which SLN pellets were added. For the purpose, we investigated two polymeric blends, namely Poloxamer/Carbopol (PF-127/Carb) and oxidized alginate/Hydroxypropylmethyl cellulose (AlgOX/HPMC). Rheological studies showed that the two fluids possess Newtonian behaviour with a viscosity slightly higher that water. The pH values of the SVDs were mainly within the normal range of nasal fluid as well as almost no osmotic effect was associated to both SVDs. All the SVDs were capable to provide DA permeation through nasal porcine mucosa. Moreover, it was found that PF-127/Carb blend possesses penetration enhancer capability better than the Alg OX/HPMC combination. Flow cytometry studies demonstrated the uptake of viscous liquids incorporating fluorescent SLNs by human nasal RPMI 2650 cell in time-dependent manner. In conclusion, the SVD formulations may be considered promising alternatives to thermosensitive hydrogels strategy. Moreover, in a broader perspective, such SVD formulations may be also hopeful for treating various neurological diseases beyond PD treatment.
Collapse
Affiliation(s)
- Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Elvira De Giglio
- Department of Chemistry, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Antonello Caponio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Katja Kristan
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Giuseppe Passantino
- Department of Veterinary Medicine, Pathological Anatomy, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Nicola Zizzo
- Department of Veterinary Medicine, Pathological Anatomy, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Giorgia Franzino
- Consiglio Nazionale delle Ricerche Istituto per i Polimeri, Compositi e Biomateriali P. le Enrico Fermi, 1 80055 Naples, Italy
| | - Domenico Larobina
- Consiglio Nazionale delle Ricerche Istituto per i Polimeri, Compositi e Biomateriali P. le Enrico Fermi, 1 80055 Naples, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
4
|
Ortega Martínez E, Morales Hernández ME, Castillo-González J, González-Rey E, Ruiz Martínez MA. Dopamine-loaded chitosan-coated solid lipid nanoparticles as a promise nanocarriers to the CNS. Neuropharmacology 2024; 249:109871. [PMID: 38412889 DOI: 10.1016/j.neuropharm.2024.109871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/28/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Dopamine is unable to access the central nervous system through the bloodstream. Only its precursor can do so, and with an effectiveness below 100% of the dose administered, as it is metabolized before crossing the blood-brain barrier. In this study, we describe a new solid lipid nanocarrier system designed and developed for dopamine. The nanoparticles were prepared by the melt-emulsification method and then coated with chitosan. The nanocarriers developed had a droplet size of about 250 nm, a polydispersity index of 0.2, a positive surface charge (+30 mV), and a percentage encapsulation efficiency of 36.3 ± 5.4. Transmission and scanning electron microscopy verified uniformity of particle size with spherical morphology. Various types of tests were performed to confirm that the nanoparticles designed are suitable for carrying dopamine through the blood-brain barrier. In vitro tests demonstrated the ability of these nanocarriers to pass through endothelial cell monolayers without affecting their integrity. This study shows that the formulation of dopamine in chitosan-coated solid lipid nanoparticles is a potentially viable formulation strategy to achieve the bioavailability of the drug for the treatment of Parkinson's disease in the central nervous system.
Collapse
Affiliation(s)
- Elena Ortega Martínez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Ma Encarnación Morales Hernández
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain.
| | - Julia Castillo-González
- Institute of Parasitology and Biomedicine "Lopez-Neyra", CSIC, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine "Lopez-Neyra", CSIC, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Ma Adolfina Ruiz Martínez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| |
Collapse
|
5
|
De Giglio E, Bakowsky U, Engelhardt K, Caponio A, La Pietra M, Cometa S, Castellani S, Guerra L, Fracchiolla G, Poeta ML, Mallamaci R, Cardone RA, Bellucci S, Trapani A. Solid Lipid Nanoparticles Containing Dopamine and Grape Seed Extract: Freeze-Drying with Cryoprotection as a Formulation Strategy to Achieve Nasal Powders. Molecules 2023; 28:7706. [PMID: 38067437 PMCID: PMC10707881 DOI: 10.3390/molecules28237706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
(1) Background: DA-Gelucire® 50/13-based solid lipid nanoparticles (SLNs) administering the neurotransmitter dopamine (DA) and the antioxidant grape-seed-derived proanthocyanidins (grape seed extract, GSE) have been prepared by us in view of a possible application for Parkinson's disease (PD) treatment. To develop powders constituted by such SLNs for nasal administration, herein, two different agents, namely sucrose and methyl-β-cyclodextrin (Me-β-CD), were evaluated as cryoprotectants. (2) Methods: SLNs were prepared following the melt homogenization method, and their physicochemical features were investigated by Raman spectroscopy, Scanning Electron Microscopy (SEM), atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). (3) Results: SLN size and zeta potential values changed according to the type of cryoprotectant and the morphological features investigated by SEM showed that the SLN samples after lyophilization appear as folded sheets with rough surfaces. On the other hand, the AFM visualization of the SLNs showed that their morphology consists of round-shaped particles before and after freeze-drying. XPS showed that when sucrose or Me-β-CD were not detected on the surface (because they were not allocated on the surface or completely absent in the formulation), then a DA surfacing was observed. In vitro release studies in Simulated Nasal Fluid evidenced that DA release, but not the GSE one, occurred from all the cryoprotected formulations. Finally, sucrose increased the physical stability of SLNs better than Me-β-CD, whereas RPMI 2650 cell viability was unaffected by SLN-sucrose and slightly reduced by SLN-Me-β-CD. (4) Conclusions: Sucrose can be considered a promising excipient, eliciting cryoprotection of the investigated SLNs, leading to a powder nasal pharmaceutical dosage form suitable to be handled by PD patients.
Collapse
Affiliation(s)
- Elvira De Giglio
- Department of Chemistry, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (U.B.); (K.E.)
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (U.B.); (K.E.)
| | - Antonello Caponio
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (A.C.); (G.F.)
| | - Matteo La Pietra
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (S.B.)
- Department of Information Engineering, Polytechnic University of Marche, 60131 Ancona, Italy
| | | | - Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.G.); (M.L.P.); (R.M.); (R.A.C.)
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (A.C.); (G.F.)
| | - Maria Luana Poeta
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.G.); (M.L.P.); (R.M.); (R.A.C.)
| | - Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.G.); (M.L.P.); (R.M.); (R.A.C.)
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.G.); (M.L.P.); (R.M.); (R.A.C.)
| | - Stefano Bellucci
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (S.B.)
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (A.C.); (G.F.)
| |
Collapse
|
6
|
Combined Dopamine and Grape Seed Extract-Loaded Solid Lipid Nanoparticles: Nasal Mucosa Permeation, and Uptake by Olfactory Ensheathing Cells and Neuronal SH-SY5Y Cells. Pharmaceutics 2023; 15:pharmaceutics15030881. [PMID: 36986742 PMCID: PMC10059967 DOI: 10.3390/pharmaceutics15030881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
We have already formulated solid lipid nanoparticles (SLNs) in which the combination of the neurotransmitter dopamine (DA) and the antioxidant grape-seed-derived proanthocyanidins (grape seed extract, GSE) was supposed to be favorable for Parkinson’s disease (PD) treatment. In fact, GSE supply would reduce the PD-related oxidative stress in a synergic effect with DA. Herein, two different methods of DA/GSE loading were studied, namely, coadministration in the aqueous phase of DA and GSE, and the other approach consisting of a physical adsorption of GSE onto preformed DA containing SLNs. Mean diameter of DA coencapsulating GSE SLNs was 187 ± 4 nm vs. 287 ± 15 nm of GSE adsorbing DA-SLNs. TEM microphotographs evidenced low-contrast spheroidal particles, irrespective of the SLN type. Moreover, Franz diffusion cell experiments confirmed the permeation of DA from both SLNs through the porcine nasal mucosa. Furthermore, fluorescent SLNs also underwent cell-uptake studies by using flow cytometry in olfactory ensheathing cells and neuronal SH-SY5Y cells, evidencing higher uptake when GSE was coencapsulated rather than adsorbed onto the particles.
Collapse
|
7
|
Recent approaches to mRNA vaccine delivery by lipid-based vectors prepared by continuous-flow microfluidic devices. Future Med Chem 2022; 14:1561-1581. [DOI: 10.4155/fmc-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Advancements in nanotechnology have resulted in the introduction of several nonviral delivery vectors for the nontoxic, efficient delivery of encapsulated mRNA-based vaccines. Lipid- and polymer-based nanoparticles (NP) have proven to be the most potent delivery systems, providing increased delivery efficiency and protection of mRNA molecules from degradation. Here, the authors provide an overview of the recent studies carried out using lipid NPs and their functionalized forms, polymeric and lipid-polymer hybrid nanocarriers utilized mainly for the encapsulation of mRNAs for gene and immune therapeutic applications. A microfluidic system as a prevalent methodology for the preparation of NPs with continuous flow enables NP size tuning, rapid mixing and production reproducibility. Continuous-flow microfluidic devices for lipid and polymeric encapsulated RNA NP production are specifically reviewed.
Collapse
|
8
|
The Encapsulation of Citicoline within Solid Lipid Nanoparticles Enhances Its Capability to Counteract the 6-Hydroxydopamine-Induced Cytotoxicity in Human Neuroblastoma SH-SY5Y Cells. Pharmaceutics 2022; 14:pharmaceutics14091827. [PMID: 36145575 PMCID: PMC9506317 DOI: 10.3390/pharmaceutics14091827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Backgrond: Considering the positive effects of citicoline (CIT) in the management of some neurodegenerative diseases, the aim of this work was to develop CIT-Loaded Solid Lipid Nanoparticles (CIT-SLNs) for enhancing the therapeutic use of CIT in parkinsonian syndrome; (2) Methods: CIT-SLNs were prepared by the melt homogenization method using the self-emulsifying lipid Gelucire® 50/13 as lipid matrix. Solid-state features on CIT-SLNs were obtained with FT-IR, thermal analysis (DSC) and X-ray powder diffraction (XRPD) studies. (3) Results: CIT-SLNs showed a mean diameter of 201 nm, −2.20 mV as zeta potential and a high percentage of entrapped CIT. DSC and XRPD analyses evidenced a greater amorphous state of CIT in CIT-SLNs. On confocal microscopy, fluorescent SLNs replacing unlabeled CIT-SLNs released the dye selectively in the cytoplasm. Biological evaluation showed that pre-treatment of SH-SY5Y dopaminergic cells with CIT-SLNs (50 µM) before the addition of 40 µM 6-hydroxydopamine (6-OHDA) to mimic Parkinson’s disease’s degenerative pathways counteracts the cytotoxic effects induced by the neurotoxin, increasing cell viability with the consistent maintenance of both nuclear and cell morphology. In contrast, pre-treatment with CIT 50 and 60 µM or plain SLNs for 2 h followed by 6-OHDA (40 µM) did not significantly influence cell viability. (4) Conclusions: These data suggest an enhanced protection exerted by CIT-SLNs with respect to free CIT and prompt further investigation of possible molecular mechanisms that underlie this difference.
Collapse
|
9
|
Hossain MN, De Leo V, Tamborra R, Laselva O, Ingrosso C, Daniello V, Catucci L, Losito I, Sollitto F, Loizzi D, Conese M, Di Gioia S. Characterization of anti-proliferative and anti-oxidant effects of nano-sized vesicles from Brassica oleracea L. (Broccoli). Sci Rep 2022; 12:14362. [PMID: 35999223 PMCID: PMC9399156 DOI: 10.1038/s41598-022-17899-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
In this in vitro study, we test our hypothesis that Broccoli-derived vesicles (BDVs), combining the anti-oxidant properties of their components and the advantages of their structure, can influence the metabolic activity of different cancer cell lines. BDVs were isolated from homogenized fresh broccoli (Brassica oleracea L.) using a sucrose gradient ultracentrifugation method and were characterized in terms of physical properties, such as particle size, morphology, and surface charge by transmission electron microscopy (TEM) and laser doppler electrophoresis (LDE). Glucosinolates content was assessed by RPLC–ESI–MS analysis. Three different human cancer cell lines (colorectal adenocarcinoma Caco-2, lung adenocarcinoma NCI-H441 and neuroblastoma SHSY5Y) were evaluated for metabolic activity by the MTT assay, uptake by fluorescence and confocal microscopy, and anti-oxidant activity by a fluorimetric assay detecting intracellular reactive oxygen species (ROS). Three bands were obtained with average size measured by TEM based size distribution analysis of 52 nm (Band 1), 70 nm (Band 2), and 82 nm (Band 3). Glucobrassicin, glucoraphanin and neoglucobrassicin were found mostly concentrated in Band 1. BDVs affected the metabolic activity of different cancer cell lines in a dose dependent manner compared with untreated cells. Overall, Band 2 and 3 were more toxic than Band 1 irrespective of the cell lines. BDVs were taken up by cells in a dose- and time-dependent manner. Pre-incubation of cells with BDVs resulted in a significant decrease in ROS production in Caco-2 and NCI-H441 stimulated with hydrogen peroxide and SHSY5Y treated with 6-hydroxydopamine, with all three Bands. Our findings open to the possibility to find a novel “green” approach for cancer treatment, focused on using vesicles from broccoli, although a more in-depth characterization of bioactive molecules is warranted.
Collapse
Affiliation(s)
- Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Rosanna Tamborra
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Onofrio Laselva
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Chiara Ingrosso
- National Research Council of Italy-Institute for Physical and Chemical Processes (CNR-IPCF S.S. Bari), c/o Department of Chemistry, University of Bari "A. Moro", Bari, Italy
| | - Valeria Daniello
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lucia Catucci
- Department of Chemistry, University of Bari, Bari, Italy
| | - Ilario Losito
- Department of Chemistry, University of Bari, Bari, Italy
| | - Francesco Sollitto
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Domenico Loizzi
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
10
|
Castellani S, Trapani A, Elisiana Carpagnano G, Cotoia A, Laselva O, Pia Foschino Barbaro M, Corbo F, Cinnella G, De Giglio E, Larobina D, Di Gioia S, Conese M. Mucopenetration study of solid lipid nanoparticles containing magneto sensitive iron oxide. Eur J Pharm Biopharm 2022; 178:94-104. [PMID: 35926759 DOI: 10.1016/j.ejpb.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022]
Abstract
In most chronic respiratory diseases, excessive viscous airway secretions oppose a formidable permeation barrier to drug delivery systems (DDSs), with a limit to their therapeutic efficacy for the targeting epithelium. Since mucopenetration of DDSs with slippery technology (i.e. PEGylation) has encountered a reduction in the presence of sticky and complex airway secretions, our aim was to evaluate the relevance of magnetic PEGylated Solid Lipid Nanoparticles (mSLNs) for pulling them through chronic obstructive pulmonary disease (COPD) airway secretions. Thus, COPD sputum from outpatient clinic, respiratory secretions aspirated from high (HI) and low (LO) airways of COPD patients in acute respiratory insufficiency, and porcine gastric mucus (PGM) were investigated for their permeability to mSLN particles under a magnetic field. Rheological tests and mSLN adhesion to airway epithelial cells (AECs) were also investigated. The results of mucopenetration show that mSLNs are permeable both in PGM sputum and in COPD, while HI and LO secretions are always impervious. Parallel rheological results show a different elastic property, which can be associated with different mucus mesostructures. Finally, adhesion tests confirm the role of the magnetic field in improving the interaction of SLNs with epithelial cells. Overall, our results reveal that mesostructure is of paramount importance in determining the mucopenetration of magnetic SLNs.
Collapse
Affiliation(s)
- Stefano Castellani
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Antonella Cotoia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Onofrio Laselva
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Gilda Cinnella
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Elvira De Giglio
- Department of Chemistry, University of Bari "Aldo Moro", Bari, Italy
| | - Domenico Larobina
- Institute of Polymers, Composites and Biomaterials - National Research Council of Italy, Portici (Naples), Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
11
|
Solid Lipid Nanoparticles Administering Antioxidant Grape Seed-Derived Polyphenol Compounds: A Potential Application in Aquaculture. Molecules 2022; 27:molecules27020344. [PMID: 35056658 PMCID: PMC8778215 DOI: 10.3390/molecules27020344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/04/2022] Open
Abstract
The supply of nutrients, such as antioxidant agents, to fish cells still represents a challenge in aquaculture. In this context, we investigated solid lipid nanoparticles (SLN) composed of a combination of Gelucire® 50/13 and Precirol® ATO5 to administer a grape seed extract (GSE) mixture containing several antioxidant compounds. The combination of the two lipids for the SLN formation resulted in colloids exhibiting mean particle sizes in the range 139–283 nm and zeta potential values in the range +25.6–43.4 mV. Raman spectra and X-ray diffraction evidenced structural differences between the free GSE and GSE-loaded SLN, leading to the conclusion that GSE alters the structure of the lipid nanocarriers. From a biological viewpoint, cell lines from gilthead seabream and European sea bass were exposed to different concentrations of GSE-SLN for 24 h. In general, at appropriate concentrations, GSE-SLN increased the viability of the fish cells. Furthermore, regarding the gene expression in those cells, the expression of antioxidant genes was upregulated, whereas the expression of hsp70 and other genes related to the cytoskeleton was downregulated. Hence, an SLN formulation containing Gelucire® 50/13/Precirol® ATO5 and GSE may represent a compelling platform for improving the viability and antioxidant properties of fish cells.
Collapse
|
12
|
Easy Preparation of Liposome@PDA Microspheres for Fast and Highly Efficient Removal of Methylene Blue from Water. Int J Mol Sci 2021; 22:ijms222111916. [PMID: 34769346 PMCID: PMC8584841 DOI: 10.3390/ijms222111916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Mussel-inspired chemistry was usefully exploited here with the aim of developing a high-efficiency, environmentally friendly material for water remediation. A micro-structured material based on polydopamine (PDA) was obtained by using liposomes as templating agents and was used for the first time as an adsorbent material for the removal of methylene blue (MB) dye from aqueous solutions. Phospholipid liposomes were made by extrusion and coated with PDA by self-polymerization of dopamine under simple and mild conditions. The obtained Liposome@PDA microspheres were characterized by DLS and Zeta potential analysis, TEM microscopy, and FTIR spectroscopy. The effects of pH, temperature, MB concentration, amount of Liposome@PDA, and contact time on the adsorption process were investigated. Results showed that the highest adsorption capacity was obtained in weakly alkaline conditions (pH = 8.0) and that it could reach up to 395.4 mg g−1 at 298 K. In addition, adsorption kinetics showed that the adsorption behavior fits a pseudo-second-order kinetic model well. The equilibrium adsorption data, instead, were well described by Langmuir isotherm. Thermodynamic analysis demonstrated that the adsorption process was endothermic and spontaneous (ΔG0 = −12.55 kJ mol−1, ΔH0 = 13.37 kJ mol−1) in the investigated experimental conditions. Finally, the applicability of Liposome@PDA microspheres to model wastewater and the excellent reusability after regeneration by removing MB were demonstrated.
Collapse
|
13
|
Ramezanzade L, Hosseini SF, Akbari-Adergani B, Yaghmur A. Cross-linked chitosan-coated liposomes for encapsulation of fish-derived peptide. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Trapani A, De Giglio E, Cometa S, Bonifacio MA, Dazzi L, Di Gioia S, Hossain MN, Pellitteri R, Antimisiaris SG, Conese M. Dopamine-loaded lipid based nanocarriers for intranasal administration of the neurotransmitter: A comparative study. Eur J Pharm Biopharm 2021; 167:189-200. [PMID: 34333085 DOI: 10.1016/j.ejpb.2021.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023]
Abstract
Both dopamine (DA) loaded Solid Lipid Nanoparticles (SLN) and liposomes (Lip), designed for intranasal administration of the neurotransmitter as an innovative Parkinson disease treatment, were already characterized in vitro in some extent by us (Trapani et al., 2018a and Cometa et al., 2020, respectively). Herein, to gain insight into the structure of SLN, X-ray Photoelectron Spectroscopy Analysis was carried out and DA-SLN (SLN 1) were found to exhibit high amounts of the neurotransmitter on the surface, whereas the external side of Glycol Chitosan (GCS) containing SLN (SLN 2) possessed only few amounts. However, SLN 2 were characterized by the highest encapsulation DA efficiency (i.e., 81%). Furthermore, in view of intranasal administration, mucoadhesion tests in vitro were also conducted for SLN and Lip formulations, evidencing high muchoadesive effect exerted by SLN 2. Concerning ex-vivo studies, SLN and Lip were found to be safe for Olfactory Ensheathing Cells and fluorescent SLN 2 were taken up in a dose-dependent manner reaching the 100% of positive cells, while Lip 2 (chitosan-glutathione-coated) were internalised by 70% OECs with six-times more lipid concentration. Hence, SLN 2 formulation containing DA and GCS may constitute interesting formulations for further studies and promising dosage form for non-invasive nose-to-brain neurotransmitter delivery.
Collapse
Affiliation(s)
- Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| | - Elvira De Giglio
- Chemistry Department, University of Bari "Aldo Moro", via Orabona, 4, Bari 70125, Italy
| | | | | | - Laura Dazzi
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato (Cagliari), Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB-CNR), Catania 95126, Italy
| | - Sophia G Antimisiaris
- Laboratory of Pharm. Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio 26504, Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio 26504, Greece
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
15
|
Abstract
Nano-delivery systems represent one of the most studied fields, thanks to the associated improvement in the treatment of human diseases. The functionality of nanostructures is a crucial point, which the effectiveness of nanodrugs depends on. A hybrid approach strategy using synthetic nanoparticles (NPs) and erythrocytes offers an optimal blend of natural and synthetic materials. This, in turn, allows medical practitioners to exploit the combined advantages of erythrocytes and NPs. Erythrocyte-based drug delivery systems have been investigated for their biocompatibility, as well as the long circulation time allowed by specific surface receptors that inhibit immune clearance. In this review, we will discuss several methods—whole erythrocytes as drug carriers, red blood cell membrane-camouflaged nanoparticles and nano-erythrosomes (NERs)—while paying attention to their application and specific preparation methods. The ability to target cells makes erythrocytes excellent drug delivery systems. They can carry a wide range of therapeutic molecules while also acting as bioreactors; thus, they have many applications in therapy and in the diagnosis of many diseases.
Collapse
|
16
|
Trapani A, Guerra L, Corbo F, Castellani S, Sanna E, Capobianco L, Monteduro AG, Manno DE, Mandracchia D, Di Gioia S, Conese M. Cyto/Biocompatibility of Dopamine Combined with the Antioxidant Grape Seed-Derived Polyphenol Compounds in Solid Lipid Nanoparticles. Molecules 2021; 26:916. [PMID: 33572331 PMCID: PMC7916151 DOI: 10.3390/molecules26040916] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/15/2023] Open
Abstract
Background: The loss of nigrostriatal neurons containing dopamine (DA) together with the "mitochondrial dysfunction" in midbrain represent the two main causes related to the symptoms of Parkinson's disease (PD). Hence, the aim of this investigation is to co-administer the missing DA and the antioxidant grape seed-derived proanthocyanidins (grape seed extract, GSE) in order to increase the levels of the neurotransmitter (which is unable to cross the Blood Brain Barrier) and reducing the oxidative stress (OS) related to PD, respectively. Methods: For this purpose, we chose Solid Lipid Nanoparticles (SLN), because they have been already proven to increase DA uptake in the brain. DA-SLN adsorbing GSE (GSE/DA-SLN) were formulated and subjected to physico-chemical characterization, and their cytocompatibility and protection against OS were examined. Results: GSE was found on SLN surface and release studies evidenced the efficiency of GSE in preventing DA autoxidation. Furthermore, SLN showed high mucoadhesive strength and were found not cytotoxic to both primary Olfactory Ensheathing and neuroblastoma SH-SY5Y cells by MTT test. Co-administration of GSE/DA-SLN and the OS-inducing neurotoxin 6-hydroxydopamine (100 μM) resulted in an increase of SH-SY5Y cell viability. Conclusions: Hence, SLN formulations containing DA and GSE may constitute interesting candidates for non-invasive nose-to-brain delivery.
Collapse
Affiliation(s)
- Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Stefano Castellani
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Enrico Sanna
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria, 09042 Monserrato (Cagliari), Italy;
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (A.G.M.); (D.E.M.)
| | - Anna Grazia Monteduro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (A.G.M.); (D.E.M.)
| | - Daniela Erminia Manno
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (A.G.M.); (D.E.M.)
| | - Delia Mandracchia
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| |
Collapse
|
17
|
Aghaz F, Vaisi-Raygani A, Khazaei M, Arkan E. The Anti-oxidative Effects of Encapsulated Cysteamine During Mice In Vitro Matured Oocyte/Morula-Compact Stage Embryo Culture Model: a Comparison of High-Efficiency Nanocarriers for Hydrophilic Drug Delivery-a Pilot Study. Reprod Sci 2020; 28:1290-1306. [PMID: 33030694 DOI: 10.1007/s43032-020-00333-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 11/25/2022]
Abstract
Although it is well-recognized that antioxidant nano-encapsulation has many benefits such as minimizing side effects (e.g., high-dose toxicity), the most attention was paid to the hydrophobic antioxidant not hydrophilic. In this regard, we sought to compare two hydrophilic model nanocarriers to deliver the optimal dose of cystamine (Cys) into the in vitro matured oocyte and the first cleavage stages until morula-compact stage embryonic cells. The formation of Cys-loaded solid self-emulsifying lipid (Cys + SLN) and Cys-loaded chitosan shell (Cys-CS-NC) were confirmed by FT-IR and UV-Vis spectrophotometry, dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) technologies. In two experiments, the oocytes/presumptive zygotes were cultured under various concentrations of Cys-SLN and Cys-CS-NC. The results of nuclear staining (aceto-orcein and Hoechst 33342), H2DCFDA fluorescent staining, chemiluminescence test, and quantitative reverse transcription-PCR (qRT-PCR) technique as in vitro toxicity studies demonstrated that adding the lowest dose of Cys-encapsulated in both nanocarriers [Cys-SLN (5 μM) and Cys-CS-NC (10 μM)] to maturation or culture medium could accumulate a strong anti-oxidative effect in oocyte/embryo by controlled release and enhanced intracellular penetration of Cys. In comparison, Cys-SLN (5 μM) is more effective than Cys-CS-NC (10 μM) groups to improve the expression of antioxidant genes (SOD, CAT, GPx) or anti-apoptotic (BCL-2) gene and decreased apoptosis (BAX and caspase-3) or intra-/extracellular ROS levels. In a nutshell, both nanocarriers (CS-NC or SLN) can deliver the lowest dose of Cys into the oocyte/embryo, thus encouraging a better expansion of antioxidant genes and enhancing the development of in vitro oocyte/embryo.
Collapse
Affiliation(s)
- Faranak Aghaz
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Elham Arkan
- Nano Drug Delivery Research Center, Faculty of Pharmacy, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
18
|
Anti-angiogenic activity of uncoated- and N,O-carboxymethyl-chitosan surface modified-Gelucire® 50/13 based solid lipid nanoparticles for oral delivery of curcumin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Cometa S, Bonifacio MA, Trapani G, Di Gioia S, Dazzi L, De Giglio E, Trapani A. In vitro investigations on dopamine loaded Solid Lipid Nanoparticles. J Pharm Biomed Anal 2020; 185:113257. [PMID: 32199326 DOI: 10.1016/j.jpba.2020.113257] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 11/17/2022]
Abstract
The progressive degeneration of nigrostriatal neurons leads to depletion of the neurotransmitter dopamine (DA) in Parkinson's disease (PD). The hydrophilicity of DA, hindering its cross of the Blood Brain Barrier, makes impossible its therapeutic administration. This work aims at investigating some physicochemical features of novel Solid Lipid Nanoparticles (SLN) intended to enhance DA brain delivery for PD patients by intranasal administration. For this aim, novel SLN were formulated in the presence of Glycol Chitosan (GCS), and it was found that SLN containing GCS and DA were smaller than DA-loaded SLN, endowed with a slightly positive zeta potential value and, remarkably, incorporated 81 % of the initial DA content. The formulated SLN were accurately characterized by Infrared Spectroscopy in Attenuated Total Reflectance mode (FT-IT/ATR) and Thermogravimetric Analysis (TGA) to highlight SLN solid-state properties as a preliminary step forward biological assay. Overall, in vitro characterization shows that SLN are promising for DA incorporation and stable from a thermal viewpoint. Further studies are in due course to test their potential for PD treatment.
Collapse
Affiliation(s)
| | | | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Laura Dazzi
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Elvira De Giglio
- Chemistry Department, University of Bari "Aldo Moro", Bari, Italy.
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|