1
|
Cunha J, Latocheski E, Fidalgo ACD, Gerola AP, Marin CFDF, Ribeiro AJ. Core-shell hybrid liposomes: Transforming imaging diagnostics and therapeutic strategies. Colloids Surf B Biointerfaces 2025; 251:114597. [PMID: 40043539 DOI: 10.1016/j.colsurfb.2025.114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 04/15/2025]
Abstract
For the last few years, researchers and industry have intensified efforts to develop a diverse array of diagnostic and therapeutic approaches to fight diseases such as cancer, diabetes, and viral infections. Among the emerging technologies, hybrid liposomes (HLs) stand out for their ability to address key limitations of conventional liposomes and deliver multifunctional solutions more effectively. While several novel nanosystems, including polymerlipid conjugates and inorganic nanoparticles (NPs), have shown great potential in the preclinical and clinical phases for the diagnosis and treatment of diseases, particularly cancer, HLs can integrate the best of both worlds, combining drug delivery properties with imaging capabilities. HLs, particularly those with core-shell structures, can surpass conventional liposomes by offering improved physicochemical properties, multifunctionality, and the capacity to overcome critical delivery challenges. The integration of natural and synthetic polymers has rapidly emerged as a preferred strategy in the development of HLs, providing significant advantages, such as enhanced stability, stimuli-responsive drug release, prolonged circulation, and improved therapeutic efficacy. Additionally, the customizable structure of HLs allows the incorporation of diverse materials, such as metals, ligands, and functional lipids, improving diagnosis and enhancing targeted delivery and cellular uptake far beyond what conventional liposomes offer. This review provides a critical and updated analysis of core-shell structure exhibiting HLs, with a focus on their preparation, characterization, and functional enhancements. We also examine in vitro/in vivo outcomes in imaging diagnosis and drug delivery while addressing the current barriers to clinical translation and future prospects for these versatile nanoplatforms.
Collapse
Affiliation(s)
- Joana Cunha
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | - Eloah Latocheski
- Department of Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | | | | | | - António José Ribeiro
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal; Group Genetics of Cognitive Dysfunction, I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4169-007, Portugal.
| |
Collapse
|
2
|
Karpuz M, Aydin HH, Ozgenc E, Erel-Akbaba G, Atlihan-Gundogdu E, Senyigit Z. 99mTc-labeled, tofacitinib citrate encapsulated chitosan microspheres loaded in situ gel formulations for intra-articular treatment of rheumatoid arthritis. Drug Dev Res 2024; 85:e22247. [PMID: 39138857 DOI: 10.1002/ddr.22247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/07/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Inflammatory diseases including rheumatoid arthritis are major health problems. Although different techniques and drugs are clinically available for the diagnosis and therapy of the disease, novel approaches regarding radiolabeled drug delivery systems are researched. Hence, in the present study, it was aimed to design, prepare, and characterize 99mTc-radiolabeled and tofacitinib citrate-encapsulated microsphere loaded poloxamer in situ gel formulations for the intra-articular treatment. Among nine different microsphere formulations, MS/TOFA-9 was chosen as the most proper one due to particle size, high encapsulation efficiency, and in vitro drug release behavior. Poloxamer 338 at a concentration of 15% was used to prepare in situ gel formulations. For intra-articular administration, microspheres were dispersed in an in situ gel containing 15% Poloxamer 338 and characterized in terms of gelation temperature, viscosity, rheological, mechanical, and spreadability properties. After the determination of the safe dose for MS/TOFA-9 and PLX-MS/TOFA-9 as 40 µL/mL in the cell culture study performed on healthy cells, the high anti-inflammatory effects were due to significant cellular inhibition of fibroblasts. In the radiolabeling studies with 99mTc, the optimum radiolabeling condition was determined as 200 ppm SnCl2 and 0.5 mg ascorbic acid, and both 99mTc-MS/TOFA-9 and 99mTc-PLX-MS/TOFA-9 exhibited high cellular binding capacity. In conclusion, although further in vivo experiments are required, PLX-MS/TOFA-9 was found to be a promising agent for intra-articular injection in rheumatoid arthritis.
Collapse
Affiliation(s)
- Merve Karpuz
- Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Husniye Hande Aydin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Emre Ozgenc
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gulsah Erel-Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | | | - Zeynep Senyigit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| |
Collapse
|
3
|
Ahmadi M, Ritter CA, von Woedtke T, Bekeschus S, Wende K. Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis. Chem Sci 2024; 15:1966-2006. [PMID: 38332833 PMCID: PMC10848714 DOI: 10.1039/d3sc05539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Neoplasias pose a significant threat to aging society, underscoring the urgent need to overcome the limitations of traditional chemotherapy through pioneering strategies. Targeted drug delivery is an evolving frontier in cancer therapy, aiming to enhance treatment efficacy while mitigating undesirable side effects. One promising avenue utilizes cell membrane receptors like the folate receptor to guide drug transporters precisely to malignant cells. Based on the cellular folate receptor as a cancer cell hallmark, targeted nanocarriers and small molecule-drug conjugates have been developed that comprise different (bio) chemistries and/or mechanical properties with individual advantages and challenges. Such modern folic acid-conjugated stimuli-responsive drug transporters provide systemic drug delivery and controlled release, enabling reduced dosages, circumvention of drug resistance, and diminished adverse effects. Since the drug transporters' structure-based de novo design is increasingly relevant for precision cancer remediation and diagnosis, this review seeks to collect and debate the recent approaches to deliver therapeutics or diagnostics based on folic acid conjugated Trojan Horses and to facilitate the understanding of the relevant chemistry and biochemical pathways. Focusing exemplarily on brain and breast cancer, recent advances spanning 2017 to 2023 in conjugated nanocarriers and small molecule drug conjugates were considered, evaluating the chemical and biological aspects in order to improve accessibility to the field and to bridge chemical and biomedical points of view ultimately guiding future research in FR-targeted cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| | - Christoph A Ritter
- Institute of Pharmacy, Section Clinical Pharmacy, University of Greifswald Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center Ferdinand-Sauerbruch-Straße 17475 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center Strempelstr. 13 18057 Rostock Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| |
Collapse
|
4
|
Karpuz M, Ozgenc E, Oner E, Atlihan-Gundogdu E, Burak Z. 68 Ga-labeled, imatinib encapsulated, theranostic liposomes: Formulation, characterization, and in vitro evaluation of anticancer activity. Drug Dev Res 2024; 85:e22136. [PMID: 38009423 DOI: 10.1002/ddr.22136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
Cancer is still a global health problem. Among cancer types, breast cancer is the most frequently diagnosed one, and it causes a high mortality rate if not diagnosed in the early stages. In our study, imatinib encapsulated, nanosized, neutral/cationic liposome formulations were prepared as theranostic agents for breast cancer. After the characterization studies in which all liposomes exhibited proper profile owing to their particle size between 133 and 250 nm, polydispersity index values lower than 0.4, neutral and cationic zeta potential values, and high drug encapsulation efficiency, controlled drug release behaviors with zero-order kinetic were obtained. The higher than 90% radiolabeling efficiency values were obtained thanks to the determination of optimum radiolabeling condition (80°C temperature, 5 mCi radioactivity, and 10 min incubation period). According to the resazurin assay evaluating the cytotoxic profile of liposomes on MCF7 cells, neutral empty liposome was found as biocompatible, while both cationic liposomes (empty and drug-loaded ones) exhibited high nonspecific cytotoxicity at even low drug concentration due to the existence of stearyl amine in the formulations. However, dose-dependent cytotoxic effect and the highest cellular binding capacity were obtained by imatinib loaded neutral liposomes. In conclusion, 68 Ga-radiolabeled, imatinib-loaded, neutral, nanosized liposome formulation is the most promising one as a theranostic agent among all formulations.
Collapse
Affiliation(s)
- Merve Karpuz
- Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Emre Ozgenc
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ezgi Oner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, Trinity School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Zeynep Burak
- Department of Nuclear Medicine, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
5
|
Transferrin conjugated Stealth liposomes for sirolimus active targeting in breast cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Dang MN, Hoover EC, Scully MA, Sterin EH, Day ES. Antibody Nanocarriers for Cancer Management. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19:100295. [PMID: 34423177 PMCID: PMC8373047 DOI: 10.1016/j.cobme.2021.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibodies are extremely valuable tools in modern medicine due to their ability to target diseased cells through selective antigen binding and thereby regulate cellular signaling or inhibit cell-cell interactions with high specificity. However, the therapeutic utility of freely delivered antibodies is limited by high production costs, low efficacy, dose-limiting toxicities, and inability to cross the cellular membrane (which hinders antibodies against intracellular targets). To overcome these limitations, researchers have begun to develop nanocarriers that can improve antibodies' delivery efficiency, safety profile, and clinical potential. This review summarizes recent advances in the design and implementation of nanocarriers for extracellular or intracellular antibody delivery, emphasizing important design considerations, and points to future directions for the field.
Collapse
Affiliation(s)
- Megan N. Dang
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Elise C. Hoover
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Mackenzie A. Scully
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Eric H. Sterin
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Emily S. Day
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Helen F. Graham Cancer Center & Research Institute, Newark, Delaware, 19713, United States
| |
Collapse
|
7
|
Tangthong T, Piroonpan T, Thipe VC, Khoobchandani M, Katti K, Katti KV, Pasanphan W. Water-Soluble Chitosan Conjugated DOTA-Bombesin Peptide Capped Gold Nanoparticles as a Targeted Therapeutic Agent for Prostate Cancer. Nanotechnol Sci Appl 2021; 14:69-89. [PMID: 33776426 PMCID: PMC7987316 DOI: 10.2147/nsa.s301942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Functionalization of water-soluble chitosan (WSCS) nanocolloids with, gold nanoparticles (AuNPs), and LyslLys3 (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-bombesin 1–14 (DOTA-BBN) peptide affords an innovative pathway to produce prostate tumor cell-specific nanomedicine agents with potential applications in molecular imaging and therapy. Methods The preparation involves the production and full characterization of water-soluble chitosan (WSCS), via gamma (γ) rays (80 kGy) irradiation, followed by DOTA-BBN conjugation for subsequent use as an effective template toward the synthesis of tumor cell-specific AuNPs-WSCS-DOTA-BBN. Results The WSCS-DOTA-BBN polymeric nanoparticles (86 ± 2.03 nm) served multiple roles as reducing and stabilizing agents in the overall template synthesis of tumor cell-targeted AuNPs. The AuNPs capped with WSCS and WSCS-DOTA-BBN exhibited average Au-core diameter of 17 ± 8 nm and 20 ± 7 nm with hydrodynamic diameters of 56 ± 1 and 67± 2 nm, respectively. The AuNPs-WSCS-DOTA-BBN showed optimum in vitro stability in biologically relevant solutions. The targeted AuNPs showed selective affinity toward GRP receptors overexpressed in prostate cancer cells (PC-3 and LNCaP). Discussion The AuNPs-WSCS-DOTA-BBN displayed cytotoxicity effects against PC-3 and LNCaP cancer cells, with concomitant safety toward the HAECs normal cells. The AuNPs-WSCS-DOTA-BBN showed synergistic targeting toward tumor cells with selective cytotoxicity of AuNPs towards PC-3 and LNCaP cells. Our investigations provide compelling evidence that AuNPs functionalized with WSCS-DOTA-BBN is an innovative nanomedicine approach for use in molecular imaging and therapy of GRP receptor-positive tumors. The template synthesis of AuNPs-WSCS-DOTA-BBN serves as an excellent non-radioactive surrogate for the development of the corresponding 198AuNPs theragnostic nanoradiopharmaceutical for use in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Theeranan Tangthong
- Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.,Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Thananchai Piroonpan
- Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Velaphi C Thipe
- Laboratório de Ecotoxicologia - Centro de Química e Meio Ambiente - Instituto de Pesquisas Energéticase Nucleares (IPEN) - Comissão Nacional de Energia Nuclear- IPEN/CNEN-SP, São Paulo, Brasil.,Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - Menka Khoobchandani
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA.,Department of Radiology, University of Missouri, Columbia, MO, 65211, USA
| | - Kavita Katti
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA.,Department of Radiology, University of Missouri, Columbia, MO, 65211, USA
| | - Kattesh V Katti
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA.,Department of Radiology, University of Missouri, Columbia, MO, 65211, USA.,Department of Physics, University of Missouri, Columbia, MO, 65211, USA
| | - Wanvimol Pasanphan
- Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.,Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
8
|
Silindir-Gunay M, Karpuz M, Ozer AY. Targeted Alpha Therapy and Nanocarrier Approach. Cancer Biother Radiopharm 2020; 35:446-458. [DOI: 10.1089/cbr.2019.3213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Mine Silindir-Gunay
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Karpuz
- Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - A. Yekta Ozer
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Karpuz M, Silindir-Gunay M, Kursunel MA, Esendagli G, Dogan A, Ozer AY. Design and in vitro evaluation of folate-targeted, co-drug encapsulated theranostic liposomes for non-small cell lung cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Zha L, Wang B, Qian J, Fletcher B, Zhang C, Dong Q, Chen W, Hong L. Preparation, characterization and preliminary pharmacokinetic study of pH-sensitive Hydroxyapatite/Zein nano-drug delivery system for doxorubicin hydrochloride. ACTA ACUST UNITED AC 2020; 72:496-506. [PMID: 31975457 DOI: 10.1111/jphp.13223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/16/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Zein nanoparticles (Zein NPs) were used as a hydroxyapatite (HA) biomineralization template to generate HA/Zein NPs. Doxorubicin hydrochloride (DOX) was loaded on HA/Zein NPs (HA/Zein-DOX NPs) to improve its pH-sensitive release, bioavailability and decrease cardiotoxicity. METHODS HA/Zein-DOX NPs were prepared by phase separation and biomimetic mineralization method. Particle size, polydispersity index (PDI), Zeta potential, transmission electron microscope, X-ray diffraction and Fourier-transform infrared spectroscopy of HA/Zein-DOX NPs were characterized. The nanoparticles were then evaluated in vitro and in vivo. KEY FINDINGS The small PDI and high Zeta potential demonstrated that HA/Zein-DOX NPs were a stable and homogeneous dispersed system and that HA was mineralized on Zein-DOX NPs. HA/Zein-DOX NPs showed pH-sensitive release. Compared with free DOX, HA/Zein-DOX NPs increased cellular uptake which caused 7 times higher in-vitro cytotoxicity in 4T1 cells. Pharmacokinetic experiments indicated the t1/2β and AUC0- t of HA/Zein-DOX NPs were 2.73- and 3.12-fold higher than those of DOX solution, respectively. Tissue distribution exhibited HA/Zein-DOX NPs reduced heart toxicity with lower heart targeting efficiency (18.58%) than that of DOX solution (37.62%). CONCLUSION In this study, HA/Zein-DOX NPs represented an antitumour drug delivery system for DOX in clinical tumour therapy with improved bioavailability and decreased cardiotoxicity.
Collapse
Affiliation(s)
- Liqiong Zha
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Beilei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Jiajia Qian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Brock Fletcher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Caiyun Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Qiannian Dong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Lufeng Hong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|