1
|
Buya AB, Mahlangu P, Witika BA. From lab to industrial development of lipid nanocarriers using quality by design approach. Int J Pharm X 2024; 8:100266. [PMID: 39050378 PMCID: PMC11268122 DOI: 10.1016/j.ijpx.2024.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Lipid nanocarriers have attracted a great deal of interest in the delivery of therapeutic molecules. Despite their many advantages, compliance with quality standards and reproducibility requirements still constrain their industrial production. The relatively high failure rate in lipid nanocarrier research and development can be attributed to immature bottom-up manufacturing practices, leading to suboptimal control of quality attributes. Recently, the pharmaceutical industry has moved toward quality-driven manufacturing, emphasizing the integration of product and process development through the principles of quality by design. Quality by design in the pharmaceutical industry involves a thorough understanding of the quality profile of the target product and involves an assessment of potential risks during the design and development phases of pharmaceutical dosage forms. By identifying essential quality characteristics, such as the active ingredients, excipients and manufacturing processes used during research and development, it becomes possible to effectively control these aspects throughout the life cycle of the drug. Successful commercialization of lipid nanocarriers can be achieved if large-scale challenges are addressed using the QbD approach. QbD has become an essential tool because of its advantages in improving processes and product quality. The application of the QbD approach to the development of lipid nanocarriers can provide comprehensive and remarkable knowledge enabling the manufacture of high-quality products with a high degree of regulatory flexibility. This article reviews the basic considerations of QbD and its application in the laboratory and large-scale development of lipid nanocarriers. Furthermore, it provides forward-looking guidance for the industrial production of lipid nanocarriers using the QbD approach.
Collapse
Affiliation(s)
- Aristote B. Buya
- Centre de Recherche en Sciences Humaines (CRESH), Ministère de la Recherche Scientifique et Innovation Technologique, Kinshasa XI, B.P. 212, Democratic Republic of the Congo
- University of Kinshasa, Faculty of Pharmaceutical Sciences, BP 212 Kinshasa XI, Democratic Republic of the Congo
| | - Phindile Mahlangu
- Department of Pharmaceutical Science, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Bwalya A. Witika
- Department of Pharmaceutical Science, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
2
|
Rathee A, Solanki P, Emad NA, Zai I, Ahmad S, Alam S, Alqahtani AS, Noman OM, Kohli K, Sultana Y. Posaconazole-hemp seed oil loaded nanomicelles for invasive fungal disease. Sci Rep 2024; 14:16588. [PMID: 39025925 PMCID: PMC11258229 DOI: 10.1038/s41598-024-66074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Invasive fungal infections (IFI) pose a significant health burden, leading to high morbidity, mortality, and treatment costs. This study aims to develop and characterize nanomicelles for the codelivery of posaconazole and hemp seed oil for IFI via the oral route. The nanomicelles were prepared using a nanoprecipitation method and optimized through the Box Behnken design. The optimized nanomicelles resulted in satisfactory results for zeta potential, size, PDI, entrapment efficiency, TEM, and stability studies. FTIR and DSC results confirm the compatibility and amorphous state of the prepared nanomicelles. Confocal laser scanning microscopy showed that the optimized nanomicelles penetrated the tissue more deeply (44.9µm) than the suspension (25µm). The drug-loaded nanomicelles exhibited sustained cumulative drug release of 95.48 ± 3.27% for 24 h. The nanomicelles showed significant inhibition against Aspergillus niger and Candida albicans (22.4 ± 0.21 and 32.2 ± 0.46 mm, respectively). The pharmacokinetic study on Wistar rats exhibited a 1.8-fold increase in relative bioavailability for the nanomicelles compared to the suspension. These results confirm their therapeutic efficacy and lay the groundwork for future research and clinical applications, providing a promising synergistic antifungal nanomicelles approach for treating IFIs.
Collapse
Affiliation(s)
- Anjali Rathee
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Pavitra Solanki
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Nasr A Emad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Iqra Zai
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Saeem Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Shadab Alam
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, 11451, Riyadh, Saudi Arabia
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, 11451, Riyadh, Saudi Arabia
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India.
| |
Collapse
|
3
|
Ansari MD, Shafi S, Pandit J, Waheed A, Jahan RN, Khan I, Vohora D, Jain S, Aqil M, Sultana Y. Raloxifene encapsulated spanlastic nanogel for the prevention of bone fracture risk via transdermal administration: Pharmacokinetic and efficacy study in animal model. Drug Deliv Transl Res 2024; 14:1635-1647. [PMID: 37996726 DOI: 10.1007/s13346-023-01480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
This research work is to evaluate spanlastic-loaded raloxifene (RLX) nanogel administration via the transdermal route to avoid its hepatic metabolism and to enhance the bioavailability for better management of osteoporosis. RLX-loaded spanlastic nanogel was prepared and characterized for its viscosity, pH, spreadability, and texture profile. The formulation was applied on the skin surface of the animal for pharmacokinetic evaluation, and later, the efficacy of the formulation was assessed in ovariectomized female Wistar rats. The nanogel was obtained with a viscosity (2552.66 ± 30.61 cP), pH (7.1 ± 0.1), and spreadability (7.1 ± 0.2 cm). The texture properties, cohesiveness, and adhesiveness of the nanogel showed its suitability for transdermal application. Nanogel showed no sign of edema and erythema in the skin irritation test which revealed its safety for transdermal application. The t1/2 obtained for RLX-spanlastic nanogel (37.02 ± 0.59 h) was much higher than that obtained for RLX-oral suspension (14.43 h). The relative bioavailability was found to be 215.96% for RLX-spanlastic nanogel, and the drug and formulation did not show any toxicity in any of the vital organs, as well as no hematological changes occurring in blood samples. In microarchitectural measurement, RLX-spanlastic nanogel exhibited no unambiguous deviations along with improved bone mineral density compared to the RLX suspension treated group. Transdermal administration of RLX-spanlastic nanogel showed significant improvement of drug bioavailability (approx. twice to oral administration) without any toxic effect in the treated rats. Hence, spanlastic nanogel could be a better approach to deliver RLX via transdermal route for the management of osteoporosis.
Collapse
Affiliation(s)
- Mohd Danish Ansari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Jayamanti Pandit
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Ayesha Waheed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Rao Nargis Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Iram Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shreshta Jain
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India.
| |
Collapse
|
4
|
Hard SAAA, Shivakumar HN, Redhwan MAM. Development and optimization of in-situ gel containing chitosan nanoparticles for possible nose-to-brain delivery of vinpocetine. Int J Biol Macromol 2023; 253:127217. [PMID: 37793522 DOI: 10.1016/j.ijbiomac.2023.127217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/20/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Vinpocetine (VIN), a derivative of vincamine found in the vinca plant, widens blood vessels in the brain and has been shown to improve cognitive function, memory, and cerebrovascular disorders. Nevertheless, the clinical utility of VIN is constrained by factors such as low oral bioavailability owing to the first-pass metabolism that often demands frequent dosing of 3-4 tablets/day. In this regard, the present work aimed to develop VIN-loaded chitosan nanoparticles (VIN-CH-NPs) to surmount these limitations and in view to enhance delivery to the brain of VIN by minimizing systemic exposure. The chitosan (CH) nanoparticles (NP) were developed by ionotropic gelation technique employing tripolyphosphate (TPP) as a cross-linking agent. Employing Design of Experiments (DoE), the effect of CH and TPP concentrations and stirring speed were systematically optimized using Box Behnken design (BBD). The optimized batch of nanoparticles displayed a particle size, zeta potential, entrapment efficiency, and drug loading of 130.6 ± 8.38 nm, +40.81 ± 0.11 mV, 97.56 ± 0.04 %, and 61 ± 0.89 %, respectively. Fourier Transform Infrared Spectroscopy indicated the chemical integrity of the drug ruling out the interaction between the VIN and excipients used. DSC and PXRD data indicated that reduction of the crystallinity of VIN in the chitosan matrix. These VIN-CH-NPs manifested good stability, exhibiting an almost spherical morphology. To mitigate rapid mucociliary clearance upon intranasal administration, the optimized VIN-CH-NPs were incorporated into thermosensitive in situ gel (VIN-CHN-ISG). It was observed that the in-situ gel loaded with nanoparticles was opalescent with a pH level of 5.3 ± 0.38. It was also noted that the gelation temperature was 32 ± 0.89 °C, and the gelation time was approximately 15 s. The drug delivery to the brain through the nasal application of optimized VIN-NPs in situ gel was assessed in rats. The results indicated significant nasal application of the in-situ gel nearly doubled the Cmax (P < 0.05) and AUC0-t (P < 0.05) in the brain compared to oral administration. Nasal administration improved drug delivery to the brain by reducing systemic exposure to VIN. A histopathological study of the nasal mucosa revealed no irritation or toxicity, making it safe for nasal administration. These findings suggest that the developed NPs in-situ gel effectively targeted vinpocetine to the brain through the nasal pathway, providing a potential therapeutic strategy for managing Alzheimer's disease.
Collapse
Affiliation(s)
- Sumaia Abdulbari Ahmed Ali Hard
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Karnataka, India; Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
| | - H N Shivakumar
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Karnataka, India; Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India.
| | - Moqbel Ali Moqbel Redhwan
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India; Department of Pharmacology, KLE College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Pandey S, Shamim A, Shaif M, Kushwaha P. Development and evaluation of Resveratrol-loaded liposomes in hydrogel-based wound dressing for diabetic foot ulcer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1811-1825. [PMID: 36862150 DOI: 10.1007/s00210-023-02441-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Diabetic foot wounds (DFUs) are counted as one of the most common microvascular complications associated with poorly controlled and chronic diabetes mellitus. It confers a serious challenge to clinical practice, surmounting hyperglycemia-induced disturbance in angiogenesis and endothelial dysfunction, with limited fruitful intervention to control the manifestations of DFUs. Resveratrol (RV) can improve endothelial function and has strong pro-angiogenic properties for the treatment of diabetic foot wounds. The present study aims to design an RV-loaded liposome-in-hydrogel system to effectively heal diabetic foot ulcers. A thin-film hydration method was used to prepare RV-loaded liposomes. Liposomal vesicles were assessed, for various characteristics such as particle size, zeta potential, and entrapment efficiency. The best-prepared liposomal vesicle was then incorporated into 1% carbopol 940 gel to develop a hydrogel system. The RV-loaded liposomal gel showed improved skin penetration. To assess the efficacy of the developed formulation, a diabetic foot ulcer animal model was used. The topical application of the developed formulation significantly reduced blood glucose and increased glycosaminoglycans (GAGs) to improve ulcer healing as well as wound closure on day 9. Faster re-epithelization, proliferation of fibroblast, formation of collagen, and reduced inflammatory cell infiltration at the wound site were also noted. Results indicate that RV-loaded liposomes in hydrogel-based wound dressing significantly accelerate wound healing in diabetic foot ulcers by restoring the altered wound healing process in diabetics.
Collapse
Affiliation(s)
- Supriya Pandey
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, 226026, India
| | - Arshiya Shamim
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, 226026, India
| | - Mohammad Shaif
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, 226026, India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
6
|
Improved Topical Drug Delivery: Role of Permeation Enhancers and Advanced Approaches. Pharmaceutics 2022; 14:pharmaceutics14122818. [PMID: 36559311 PMCID: PMC9785322 DOI: 10.3390/pharmaceutics14122818] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The delivery of drugs via transdermal routes is an attractive approach due to ease of administration, bypassing of the first-pass metabolism, and the large skin surface area. However, a major drawback is an inability to surmount the skin's stratum corneum (SC) layer. Therefore, techniques reversibly modifying the stratum corneum have been a classical approach. Surmounting the significant barrier properties of the skin in a well-organised, momentary, and harmless approach is still challenging. Chemical permeation enhancers (CPEs) with higher activity are associated with certain side effects restricting their advancement in transdermal drug delivery. Furthermore, complexity in the interaction of CPEs with the skin has led to difficulty in elucidating the mechanism of action. Nevertheless, CPEs-aided transdermal drug delivery will accomplish its full potential due to advancements in analytical techniques, synthetic chemistry, and combinatorial studies. This review focused on techniques such as drug-vehicle interaction, vesicles and their analogues, and novel CPEs such as lipid synthesis inhibitors (LSIs), cell-penetrating peptides (CPPs), and ionic liquids (ILs). In addition, different types of microneedles, including 3D-printed microneedles, have been focused on in this review.
Collapse
|
7
|
Unnisa A, Chettupalli AK, Al Hagbani T, Khalid M, Jandrajupalli SB, Chandolu S, Hussain T. Development of Dapagliflozin Solid Lipid Nanoparticles as a Novel Carrier for Oral Delivery: Statistical Design, Optimization, In-Vitro and In-Vivo Characterization, and Evaluation. Pharmaceuticals (Basel) 2022; 15:ph15050568. [PMID: 35631394 PMCID: PMC9143250 DOI: 10.3390/ph15050568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Controlling hyperglycemia and avoiding glucose reabsorption are significant goals in type 2 diabetes treatments. Among the numerous modes of medication administration, the oral route is the most common. Introduction: Dapagliflozin is an oral hypoglycemic agent and a powerful, competitive, reversible, highly selective, and orally active human SGLT2 inhibitor. Dapagliflozin-loaded solid lipid nanoparticles (SLNs) are the focus of our present investigation. Controlled-release lipid nanocarriers were formulated by integrating them into lipid nanocarriers. The nanoparticle size and lipid utilized for formulation help to regulate the release of pharmaceuticals over some time. Dapagliflozin-loaded nanoparticles were formulated by hot homogenization followed by ultra-sonication. The morphology and physicochemical properties of dapagliflozin-SLNs have been characterized using various techniques. The optimized dapagliflozin-SLNs have a particle size ranging from 100.13 ± 7.2 to 399.08 ± 2.4 nm with 68.26 ± 0.2 to 94.46 ± 0.7% entrapment efficiency (%EE). Dapagliflozin-SLNs were optimized using a three-factor, three-level Box–Behnken design (BBD). Polymer concentration (X1), surfactant concentration (X2), and stirring duration (X3) were chosen as independent factors, whereas %EE, cumulative drug release (%CDR), and particle size were selected as dependent variables. Interactions between drug substances and polymers were studied using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and atomic force microscopy (AFM) analysis indicated the crystalline change from the drug to the amorphous crystal. Electron microscope studies revealed that the SLNs’ structure is nearly perfectly round. It is evident from the findings that dapagliflozin-SLNs could lower elevated blood glucose levels to normal in STZ-induced diabetic rats, demonstrating a better hypoglycemic impact on type 2 diabetic patients. The in vivo pharmacokinetic parameters of SLNs exhibited a significant rise in Cmax (1258.37 ± 1.21 mcg/mL), AUC (5247.04 mcg/mL), and oral absorption (2-fold) of the drug compared to the marketed formulation in the Sprague Dawley rats.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Correspondence: ; Tel.: +966-537860207
| | - Ananda K. Chettupalli
- Department of Pharmaceutical Sciences, School of Pharmacy, Anurag University, Hyderabad 500088, India;
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Suresh B. Jandrajupalli
- Department of Preventive Dental Sciences, College of Dentistry, University of Hail, Hail 81442, Saudi Arabia; (S.B.J.); (S.C.)
| | - Swarnalatha Chandolu
- Department of Preventive Dental Sciences, College of Dentistry, University of Hail, Hail 81442, Saudi Arabia; (S.B.J.); (S.C.)
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| |
Collapse
|
8
|
Ansari MD, Saifi Z, Pandit J, Khan I, Solanki P, Sultana Y, Aqil M. Spanlastics a Novel Nanovesicular Carrier: Its Potential Application and Emerging Trends in Therapeutic Delivery. AAPS PharmSciTech 2022; 23:112. [PMID: 35411425 DOI: 10.1208/s12249-022-02217-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022] Open
Abstract
Nanotechnology-based drug delivery system has played a very crucial role in overpowering the tasks allied with the conventional dosage form. Spanlastics, an elastic nanovesicle with an ability to carry wide range of drug molecules, make it a potential drug delivery carrier. Spanlastics have extended rising curiosity for diverse sort of route of administration. They can squeeze themselves through the skin pore due to elastic and deformable nature which makes them favorable for transdermal delivery. Spanlastics consist of non-ionic surfactant or blend of surfactants. Many researchers proved that spanlastics have been significantly augment therapeutic efficacy, enhanced drug bioavailability, and reduced drug toxicity. This review summarizes various vesicular systems, composition and structure of spanlastics, advantages of spanlastics over other drug delivery systems, and mechanism of drug penetration through skin. It also gives a brief on different types of drug encapsulated in spanlastics vesicles for the treatment of various diseases.
Collapse
|
9
|
Gaynanova G, Vasileva L, Kashapov R, Kuznetsova D, Kushnazarova R, Tyryshkina A, Vasilieva E, Petrov K, Zakharova L, Sinyashin O. Self-Assembling Drug Formulations with Tunable Permeability and Biodegradability. Molecules 2021; 26:6786. [PMID: 34833877 PMCID: PMC8624506 DOI: 10.3390/molecules26226786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
This review focuses on key topics in the field of drug delivery related to the design of nanocarriers answering the biomedicine criteria, including biocompatibility, biodegradability, low toxicity, and the ability to overcome biological barriers. For these reasons, much attention is paid to the amphiphile-based carriers composed of natural building blocks, lipids, and their structural analogues and synthetic surfactants that are capable of self-assembly with the formation of a variety of supramolecular aggregates. The latter are dynamic structures that can be used as nanocontainers for hydrophobic drugs to increase their solubility and bioavailability. In this section, biodegradable cationic surfactants bearing cleavable fragments are discussed, with ester- and carbamate-containing analogs, as well as amino acid derivatives received special attention. Drug delivery through the biological barriers is a challenging task, which is highlighted by the example of transdermal method of drug administration. In this paper, nonionic surfactants are primarily discussed, including their application for the fabrication of nanocarriers, their surfactant-skin interactions, the mechanisms of modulating their permeability, and the factors controlling drug encapsulation, release, and targeted delivery. Different types of nanocarriers are covered, including niosomes, transfersomes, invasomes and chitosomes, with their morphological specificity, beneficial characteristics and limitations discussed.
Collapse
Affiliation(s)
- Gulnara Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russia; (L.V.); (R.K.); (D.K.); (R.K.); (A.T.); (E.V.); (K.P.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nanostructured lipid carrier to overcome stratum corneum barrier for the delivery of agomelatine in rat brain; formula optimization, characterization and brain distribution study. Int J Pharm 2021; 607:121006. [PMID: 34391848 DOI: 10.1016/j.ijpharm.2021.121006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 01/22/2023]
Abstract
The current work attempted to achieve bypassed hepatic metabolism, controlled release, and boosted brain distribution of agomelatine by loading in NLC and administering via transdermal route. Agomelatine-loaded NLC (AG-NLC) was fabricated employing melt-emulsification technique and optimized using central composite design. The optimized AG-NLC had 183.16 ± 6.82 nm particle size, 0.241 ± 0.0236 polydispersity index, and 83.29 ± 2.76% entrapment efficiency. TEM and FESEM visually confirmed the size and surface morphology of AG-NLC, respectively. DSC thermogram confirmed the conversion of AG from crystalline to amorphous form, which indicates improved solubility of AG when loaded in NLC. For further stability and improved applicability, AG-NLC was converted into a hydrogel. The texture analysis of AG-NLC-Gel showed appropriate gelling property in terms of hardness (142.292 g), cohesiveness (0.955), and adhesiveness (216.55 g.sec). In comparison to AG-suspension-Gel (38.036 ± 6.058%), AG-NLC-Gel (89.440 ± 2.586%) exhibited significantly higher (P < 0.005) skin permeation profile during the 24 h study. In the CLSM study, Rhodamine-B loaded AG-NLC-Gel established skin penetration up to the depth of 45 µm, whereas AG-Suspension-Gel was restricted only to a depth of 25 µm. γ-scintigraphy in wistar rats revealed ~ 55.38% brain distribution potential of 99mTc-AG-NLC-Gel at 12 h, which was 6.31-fold higher than 99mTc-AG-Suspension-Gel. Overall, the gamma scintigraphy assisted brain distribution study suggests that NLC-Gel system may improve the brain delivery of agomelatine, when applied transdermally.
Collapse
|
11
|
Trivedi R, Umekar M, Kotagale N, Bonde S, Taksande J. Design, evaluation and in vivo pharmacokinetic study of a cationic flexible liposomes for enhanced transdermal delivery of pramipexole. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Buspirone loaded solid lipid nanoparticles for amplification of nose to brain efficacy: Formulation development, optimization by Box-Behnken design, in-vitro characterization and in-vivo biological evaluation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102164] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Alruwaili NK, Zafar A, Imam SS, Alharbi KS, Alotaibi NH, Alshehri S, Alhakamy NA, Alzarea AI, Afzal M, Elmowafy M. Stimulus Responsive Ocular Gentamycin-Ferrying Chitosan Nanoparticles Hydrogel: Formulation Optimization, Ocular Safety and Antibacterial Assessment. Int J Nanomedicine 2020; 15:4717-4737. [PMID: 32636627 PMCID: PMC7335305 DOI: 10.2147/ijn.s254763] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/08/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The present study was designed to study the gentamycin (GTM)-loaded stimulus-responsive chitosan nanoparticles to treat bacterial conjunctivitis. METHODS GTM-loaded chitosan nanoparticles (GTM-CHNPs) were prepared by ionotropic gelation method and further optimized by 3-factor and 3-level Box-Behnken design. Chitosan (A), sodium tripolyphosphate (B), and stirring speed (C) were selected as independent variables. Their effects were observed on particle size (PS as Y1), entrapment efficiency (EE as Y2), and loading capacity (LC as Y3). RESULTS The optimized formulation showed the particle size, entrapment efficiency, and loading capacity of 135.2±3.24 nm, 60.18±1.65%, and 34.19±1.17%, respectively. The optimized gentamycin-loaded chitosan nanoparticle (GTM-CHNPopt) was further converted to the stimulus-responsive sol-gel system (using pH-sensitive carbopol 974P). GTM-CHNPopt sol-gel (NSG5) exhibited good gelling strength and sustained release (58.99±1.28% in 12h). The corneal hydration and histopathology of excised goat cornea revealed safe to the cornea. It also exhibited significant (p<0.05) higher ZOI than the marketed eye drop. CONCLUSION The finding suggests that GTM-CHNP-based sol-gel is suitable for ocular delivery to enhance the corneal contact time and improved patient compliance.
Collapse
Affiliation(s)
- Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
- College of Pharmacy, Almaarefa University, Riyadh, Kingdom of Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Abdulaziz I Alzarea
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
- Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
14
|
Shinde M, Bali N, Rathod S, Karemore M, Salve P. Effect of binary combinations of solvent systems on permeability profiling of pure agomelatine across rat skin: a comparative study with statistically optimized polymeric nanoparticles. Drug Dev Ind Pharm 2020; 46:826-845. [DOI: 10.1080/03639045.2020.1757697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mahesh Shinde
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Nikhil Bali
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Shahadev Rathod
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Megha Karemore
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Pramod Salve
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| |
Collapse
|
15
|
Salem HF, Nafady MM, Kharshoum RM, Abd El-Ghafar OA, Farouk HO. Mitigation of Rheumatic Arthritis in a Rat Model via Transdermal Delivery of Dapoxetine HCl Amalgamated as a Nanoplatform: In vitro and in vivo Assessment. Int J Nanomedicine 2020; 15:1517-1535. [PMID: 32189966 PMCID: PMC7065716 DOI: 10.2147/ijn.s238709] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/01/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Dapoxetine HCl (DH), a selective serotonin reuptake inhibitor, may be useful for the treatment of rheumatic arthritis (RA). The purpose of this study was to investigate the therapeutic efficacy of transdermal delivery of DH in transethosome nanovesicles (TENVs). This novel delivery of DH may overcome the drawbacks associated with orally administered DH and improve patient compliance. Methods DH-TENV formulations were prepared using an injection- sonication method and optimized using a 33 Box-Behnken-design with Design Expert® software. The TENV formulations were assessed for entrapment efficiency (EE-%), vesicle size, zeta potential, in vitro DH release, and skin permeation. The tolerability of the optimized DH-TENV gel was investigated using a rat skin irritation test. A pharmacokinetic analysis of the optimized DH-TENV gel was also conducted in rats. Moreover, the anti-RA activity of the optimized DH-TENV gel was assessed based on the RA-specific marker anti-cyclic cirtullinated peptide antibody (anti-CCP), the cartilage destruction marker cartilage oligomeric matrix protein (COMP) and the inflammatory marker interleukin-6 (IL-6). Level of tissue receptor activator of nuclear factor kappa-Β ligand (RANKL) were also assessed. Results The optimized DH-TENV formulation involved spherical nanovesicles that had an appropriate EE- % and skin permeation characteristic. The DH-TENV gel was well tolerated by rats. The pharmacokinetics analysis showed that the optimized DH-TENV gel boosted the bioavailability of the DH by 2.42- and 4.16-fold compared to the oral DH solution and the control DH gel, respectively. Moreover, it significantly reduced the serum anti-CCP, COMP and IL-6 levels and decreased the RANKL levels. Furthermore, the DH-TENV gel attenuated histopathological changes by almost normalizing the articular surface and synovial fluid. Conclusion The results indicate that DH-TENVs can improve transdermal delivery of DH and thereby alleviate RA.
Collapse
Affiliation(s)
- Heba Farouk Salem
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni- Suef University, Beni Suef, Egypt
| | - Mohamed Mahmoud Nafady
- Pharmaceutics and Clinical Pharmacy Department, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| | - Rasha Mostafa Kharshoum
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni- Suef University, Beni Suef, Egypt
| | | | - Hanan Osman Farouk
- Pharmaceutics and Clinical Pharmacy Department, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| |
Collapse
|