1
|
Xu W, Xu J, Huang D, Wang C, Song J, Chen X, Suo H. Acne vulgaris: advances in pathogenesis and prevention strategies. Eur J Clin Microbiol Infect Dis 2025; 44:515-532. [PMID: 39815129 DOI: 10.1007/s10096-024-04984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/01/2024] [Indexed: 01/18/2025]
Abstract
PURPOSE The aim is to encourage the creation of innovative prevention and treatment measures and to help readers in selecting the most effective ones. BACKGROUND Acne vulgaris is the most prevalent skin condition of adolescents, affecting approximately 9% of the global population. Patients become more prone to mental and psychological problems because of it. Several strategies have been established to effectively improve acne vulgaris. However, the complexity of its pathogenesis and the limitations of the existing strategies to control it in terms of bacterial resistance, patient compliance, and safety have made the development of new control strategies a hot topic in skin health research. RESULTS This review systematically summarizes the pathogenesis and prevention strategies of acne vulgaris according to the most recent studies. The limitations of the current research on acne vulgaris and future research directions are presented based on the analysis of the strengths and weaknesses of the existing prevention and treatment strategies.
Collapse
Affiliation(s)
- Weiping Xu
- College of Food Science, Southwest University, Chongqing, China
| | - Jiahui Xu
- College of Food Science, Southwest University, Chongqing, China
| | - Dandan Huang
- National Key Laboratory of Market Supervision (Condiment Supervision Technology), Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, China
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, China
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, China.
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, China.
- Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China.
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China.
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, China.
- Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
2
|
Fadaei MS, Fadaei MR, Kheirieh AE, Rahmanian-Devin P, Dabbaghi MM, Nazari Tavallaei K, Shafaghi A, Hatami H, Baradaran Rahimi V, Nokhodchi A, Askari VR. Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds. EXCLI JOURNAL 2024; 23:212-263. [PMID: 38487088 PMCID: PMC10938253 DOI: 10.17179/excli2023-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 03/17/2024]
Abstract
Niosomes are drug delivery systems with widespread applications in pharmaceutical research and the cosmetic industry. Niosomes are vesicles of one or more bilayers made of non-ionic surfactants, cholesterol, and charge inducers. Because of their bilayer characteristics, similar to liposomes, niosomes can be loaded with lipophilic and hydrophilic cargos. Therefore, they are more stable and cheaper in preparation than liposomes. They can be classified into four categories according to their sizes and structures, namely small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs,), multilamellar vesicles (MLVs), and multivesicular vesicles (MVVs). There are many methods for niosome preparation, such as thin-film hydration, solvent injection, and heating method. The current study focuses on the preparation methods and pharmacological effects of niosomes loaded with natural and chemical anti-inflammatory compounds in kinds of literature during the past decade. We found that most research was carried out to load anti-inflammatory agents like non-steroidal anti-inflammatory drugs (NSAIDs) into niosome vesicles. The studies revealed that niosomes could improve anti-inflammatory agents' physicochemical properties, including solubility, cellular uptake, stability, encapsulation, drug release and liberation, efficiency, and oral bioavailability or topical absorption. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohammad Saleh Fadaei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Emad Kheirieh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Abouzar Shafaghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Hatami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, FL 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Yehia RM, Teaima MH, Ragaie MH, Elmazar MM, Attia DA, El-Nabarawi MA. Resolving acne with optimized adapalene microspongeal gel, in vivo and clinical evaluations. Sci Rep 2024; 14:1359. [PMID: 38228631 DOI: 10.1038/s41598-024-51392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
In our pursuit of enhancing acne treatment while minimizing side effects, we developed tailored Adapalene microsponges (MS) optimized using a Box-Behnken design 33. The independent variables, Eudragit RS100 percentage in the polymer mixture, organic phase volume, and drug to polymer percentage, were explored. The optimized formulation exhibited remarkable characteristics, with a 98.3% ± 1.6 production yield, 97.3% ± 1.64 entrapment efficiency, and a particle size of 31.8 ± 1.1 µm. Notably, it achieved a 24 h cumulative drug release of 75.1% ± 1.4. To delve deeper into its efficacy, we evaluated the optimized microspongeal-gel in vitro, in vivo, and clinically. It demonstrated impressive retention in the pilosebaceous unit, a target for acne treatment. Comparative studies between our optimized Adapalene microspongeal gel and marketed Adapalene revealed superior performance. In vivo studies on Propionibacterium acnes-infected mice ears showed a remarkable 97% reduction in ear thickness, accompanied by a significant decrease in inflammatory signs and NF-κB levels, as confirmed by histopathological and histochemical examination. Moreover, in preliminary clinical evaluation, it demonstrated outstanding effectiveness in reducing comedonal lesions while causing fewer irritations. This not only indicates its potential for clinical application but also underscores its ability to enhance patient satisfaction, paving the way for future commercialization.
Collapse
Affiliation(s)
- Rania M Yehia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Suez Desert Road, El Sherouk City, Cairo, 1183, Egypt.
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maha H Ragaie
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Al Minya, Egypt
| | - Mohamed M Elmazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Dalia A Attia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Suez Desert Road, El Sherouk City, Cairo, 1183, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
AbouSamra MM, Farouk F, Abdelhamed FM, Emam KAF, Abdeltawab NF, Salama AH. Synergistic approach for acne vulgaris treatment using glycerosomes loaded with lincomycin and lauric acid: Formulation, in silico, in vitro, LC-MS/MS skin deposition assay and in vivo evaluation. Int J Pharm 2023; 646:123487. [PMID: 37805147 DOI: 10.1016/j.ijpharm.2023.123487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
This study aims to develop a pharmaceutical formulation that combines the potent antibacterial effect of lincomycin and lauric acid against Cutibacterium acnes (C. acnes), a bacterium implicated in acne. The selection of lauric acid was based on an in silico study, which suggested that its interaction with specific protein targets of C. acnes may contribute to its synergistic antibacterial and anti-inflammatory effects. To achieve our aim, glycerosomes were fabricated with the incorporation of lauric acid as a main constituent of glycerosomes vesicular membrane along with cholesterol and phospholipon 90H, while lincomycin was entrapped within the aqueous cavities. Glycerol is expected to enhance the cutaneous absorption of the active moieties via hydrating the skin. Optimization of lincomycin-loaded glycerosomes (LM-GSs) was conducted using a mixed factorial experimental design. The optimized formulation; LM-GS4 composed of equal ratios of cholesterol:phospholipon90H:Lauric acid, demonstrated a size of 490 ± 17.5 nm, entrapment efficiency-values of 90 ± 1.4 % for lincomycin, and97 ± 0.2 % for lauric acid, and a surface charge of -30.2 ± 0.5mV. To facilitate its application on the skin, the optimized formulation was incorporated into a carbopol hydrogel. The formed hydrogel exhibited a pH value of 5.95 ± 0.03 characteristic of pH-balanced skincare and a shear-thinning non-Newtonian pseudoplastic flow. Skin deposition of lincomycin was assessed using an in-house developed and validated LC-MS/MS method employing gradient elution and electrospray ionization detection. Results revealed that LM-GS4 hydrogel exhibited a two-fold increase in skin deposition of lincomycin compared to lincomycin hydrogel, indicating improved skin penetration and sustained release. The synergistic healing effect of LM-GS4 was evidenced by a reduction in inflammation, bacterial load, and improved histopathological changes in an acne mouse model. In conclusion, the proposed formulation demonstrated promising potential as a topical treatment for acne. It effectively enhanced the cutaneous absorption of lincomycin, exhibited favorable physical properties, and synergistic antibacterial and healing effects. This study provides valuable insights for the development of an effective therapeutic approach for acne management.
Collapse
Affiliation(s)
- Mona M AbouSamra
- Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Faten Farouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Farah M Abdelhamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Khloud A F Emam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nourtan F Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alaa H Salama
- Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt.
| |
Collapse
|
5
|
Khalilzadeh M, Shayan M, Jourian S, Rahimi M, Sheibani M, Dehpour AR. A comprehensive insight into the anti-inflammatory properties of dapsone. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1509-1523. [PMID: 36125533 DOI: 10.1007/s00210-022-02297-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/13/2022] [Indexed: 02/01/2023]
Abstract
The 4,4'-diaminodiphenyl sulfone (DDS), also known as dapsone, is traditionally used as a potent anti-bacterial agent in clinical management of leprosy. For decades, dapsone has been among the first-line medications used in multidrug treatment of leprosy recommended by the World Health Organization (WHO). Shortly after dapsone's discovery as an antibiotic in 1937, the dual function of dapsone (anti-microbial and anti-inflammatory) was elucidated. Dapsone exerts its anti-bacterial effects by inhibiting dihydrofolic acid synthesis, leading to inhibition of bacterial growth, while its anti-inflammatory properties are triggered by inhibiting reactive oxygen species (ROS) production, reducing the effect of eosinophil peroxidase on mast cells and downregulating neutrophil-mediated inflammatory responses. Among the leading mechanisms associated with its anti-microbial/anti-protozoal effects, dapsone clearly has multiple antioxidant, anti-inflammatory, and anti-apoptotic functions. In this regard, it has been described in treating a wide variety of inflammatory and infectious skin conditions. Previous reports have explored different molecular targets for dapsone and provided insight into the anti-inflammatory mechanism of dapsone. This article reviews several basic, experimental, and clinical approaches on anti-inflammatory effect of dapsone.
Collapse
Affiliation(s)
- Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Maryam Shayan
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Sina Jourian
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Mohammad Rahimi
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, 14496-14525, Iran.
- Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran.
| |
Collapse
|
6
|
Yehia RM, Attia DA, Elmazar MM, El-Nabarawi MA, Teaima MH. Screening of Adapalene Microsponges Fabrication Parameters with Insight on the In vitro Biological Effectiveness. Drug Des Devel Ther 2022; 16:3847-3864. [PMID: 36388080 PMCID: PMC9644220 DOI: 10.2147/dddt.s383051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/18/2022] [Indexed: 03/25/2024] Open
Abstract
PURPOSE The objective of the present study was to scrutinize the microsponges (MS) as a carrier system using Adapalene (ADA) as a model drug. METHODS Data modelling was implemented using Plackett-Burman design to identify the main variables affecting the formulation of ADA-MS. The adopted method of preparation for MS was quasi-emulsion solvent diffusion method. The nominated independent variables were volume of organic phase, sonication time, stirring speed, drug percent, polymer type, emulsifier concentration, and method of organic phase addition. As for the dependent variables, they included entrapment efficiency (E.E.%), production yield (P.Y.%), particle size (P.S.) and morphology. Furthermore, selected ADA loaded microsponges (ADA-MS) were in vitro assayed for their biological activities via cytotoxicity, UVA irradiation and cell viability, and antimicrobial activity. RESULTS The study indicated that the drug percent, polymer type and surfactant concentration have the key significant effect on E.E.% and P.Y.%, while, the drug percent, stirring speed and volume of organic phase have had a significant effect on P.S. and their morphology. Furthermore, ADA-MS had a momentous cytotoxic effect on A431 and M10 cell-lines with exceptional enrichment when the polymer Eudragit RS100 was used. Also, the ADA-MS increased the cell viability after UVA irradiation on HFB-4 cell-line by 14% to 43%, especially when using Ethyl Cellulose as a polymer. Lastly, the antimicrobial activity of ADA against Propionibacterium acnes was boosted when incorporated into MS. CONCLUSION The Plackett-Burman design proved its impact in discerning preparation variables affecting the quality of ADA-MS formulation, with heightening of the in vitro biological activities of ADA. Thus, MS was presumed to be an auspicious carrier system for ADA.
Collapse
Affiliation(s)
- Rania M Yehia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Dalia A Attia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Mohamed M Elmazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Cyclodextrin-based dermatological formulations: dermopharmaceutical and cosmetic applications. Colloids Surf B Biointerfaces 2022; 221:113012. [DOI: 10.1016/j.colsurfb.2022.113012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
8
|
Abdelhamed FM, Abdeltawab NF, ElRakaiby MT, Shamma RN, Moneib NA. Antibacterial and Anti-Inflammatory Activities of Thymus vulgaris Essential Oil Nanoemulsion on Acne Vulgaris. Microorganisms 2022; 10:microorganisms10091874. [PMID: 36144477 PMCID: PMC9503056 DOI: 10.3390/microorganisms10091874] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are frequently used in acne treatment and their prolonged use has led to an emergence of resistance. This study aimed to investigate the use of natural antimicrobials as an alternative therapy. The antimicrobial and anti-inflammatory activities of five commonly used essential oils (EOs) (tea tree, clove, thyme, mentha and basil EOs), and their possible mechanisms of action against Cutibacterium acnes and Staphylococcus epidermidis, were explored. The effect of the most potent EO on membrane permeability was elucidated and its anti-inflammatory action, when formulated as nanoemulsion, was tested in an in vivo acne model. The in vitro studies showed that thyme EO had the most potent antimicrobial and antibiofilm activity, with phenolics and terpenoids as main antimicrobial constituents of EO. Thyme EO affected cell membrane permeability of both bacterial species, evident by the detection of the leakage of intracellular ions and membrane integrity by the leakage of nucleic acids. Morphological alteration in bacterial cells was confirmed by transmission electron microscopy. Thyme EO nanoemulsion led to the suppression of an inflammatory response in acne animal models along with a bacterial load decrease and positive histopathological changes. Collectively, thyme EO nanoemulsion showed potent antimicrobial and anti-inflammatory effects compared to the reference antibiotics, suggesting its effectiveness as a natural alternative in acne treatment.
Collapse
Affiliation(s)
- Farah M. Abdelhamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (F.M.A.); (N.F.A.)
| | - Nourtan F. Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (F.M.A.); (N.F.A.)
| | - Marwa T. ElRakaiby
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rehab N. Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Nayera A. Moneib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
9
|
Habib BA, Abdeltawab NF, Salah Ad-Din I. D-optimal mixture design for optimization of topical dapsone niosomes: in vitro characterization and in vivo activity against Cutibacterium acnes. Drug Deliv 2022; 29:821-836. [PMID: 35266431 PMCID: PMC8920366 DOI: 10.1080/10717544.2022.2048131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study aimed to illustrate the use of D-optimal mixture design (DOMD) for optimization of an enhancer containing Dapsone niosomal formula for acne topical treatment. Mixture components (MixCs) studied were: Span 20, Cholesterol, and Cremophor RH. Different responses were measured. Optimized formula (OF) was selected to minimize particle size and maximize absolute zeta potential and entrapment efficiency. Optimized formula gel (OF-gel) was prepared and characterized. OF-gel in vivo skin penetration using confocal laser scanning microscopy and activity against Cutibacterium acnes in acne mouse model were studied. Based on DOMD results analysis, adequate models were derived. Piepel and contour plots were plotted accordingly to explain how alteration in MixCs L-pseudo values affected studied responses and regions for different responses’ values. The OF had suitable predicted responses which were in good correlation with the actually measured ones. The OF-gel showed suitable characterization and in vivo skin penetration up to the dermis layer. In vivo acne mouse-model showed that OF-gel-treated group (OF-gel-T-gp) had significantly better recovery (healing) criteria than untreated (UT-gp) and Aknemycin®-treated (A-T-gp) groups. This was evident in significantly higher reduction of inflammation percent observed in OF-gel-T-gp than both UT-gp and A-T-gp. Better healing in OF-gel-T-gp compared with other groups was also verified by histopathological examination. Moreover, OF-gel-T-gp and A-T-gp bacterial loads were non-significantly different from each other but significantly lower than UT-gp. Thus, DOMD was an adequate statistical tool for optimization of an appropriate enhancer containing Dapsone niosomal formula that proved to be promising for topical treatment of acne.
Collapse
Affiliation(s)
- Basant A Habib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nourtan F Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ibtehal Salah Ad-Din
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Constantinou AP, Georgiou TK. Pre‐clinical and clinical applications of thermoreversible hydrogels in biomedical engineering: a review. POLYM INT 2021. [DOI: 10.1002/pi.6266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anna P Constantinou
- Department of Materials Imperial College London, South Kensington Campus, Royal School of Mines London UK
| | - Theoni K Georgiou
- Department of Materials Imperial College London, South Kensington Campus, Royal School of Mines London UK
| |
Collapse
|
11
|
Ramanunny AK, Wadhwa S, Gulati M, Singh SK, Kapoor B, Dureja H, Chellappan DK, Anand K, Dua K, Khursheed R, Awasthi A, Kumar R, Kaur J, Corrie L, Pandey NK. Nanocarriers for treatment of dermatological diseases: Principle, perspective and practices. Eur J Pharmacol 2020; 890:173691. [PMID: 33129787 DOI: 10.1016/j.ejphar.2020.173691] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Skin diseases are the fourth leading non-fatal skin conditions that act as a burden and affect the world economy globally. This condition affects the quality of a patient's life and has a pronounced impact on both their physical and mental state. Treatment of these skin conditions with conventional approaches shows a lack of efficacy, long treatment duration, recurrence of conditions, systemic side effects, etc., due to improper drug delivery. However, these pitfalls can be overcome with the applications of nanomedicine-based approaches that provide efficient site-specific drug delivery at the target site. These nanomedicine-based strategies are evolved as potential treatment opportunities in the form of nanocarriers such as polymeric and lipidic nanocarriers, nanoemulsions along with emerging others viz. carbon nanotubes for dermatological treatment. The current review focuses on challenges faced by the existing conventional treatments along with the topical therapeutic perspective of nanocarriers in treating various skin diseases. A total of 213 articles have been reviewed and the application of different nanocarriers in treating various skin diseases has been explained in detail through case studies of previously published research works. The toxicity related aspects of nanocarriers are also discussed.
Collapse
Affiliation(s)
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|