1
|
Yostawonkul J, Kitiyodom S, Supchukun K, Thumrongsiri N, Saengkrit N, Pinpimai K, Hajitou A, Thompson KD, Rattanapinyopituk K, Maita M, Kamble MT, Yata T, Pirarat N. Masculinization of Red Tilapia ( Oreochromis spp.) Using 17α-Methyltestosterone-Loaded Alkyl Polyglucosides Integrated into Nanostructured Lipid Carriers. Animals (Basel) 2023; 13:ani13081364. [PMID: 37106927 PMCID: PMC10135129 DOI: 10.3390/ani13081364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of the present study was to optimize a masculinization platform for the production of all-male red tilapia fry by oral administration of 30 and 60 ppm of MT and alkyl polyglucoside nanostructured lipid carriers (APG-NLC) loaded with MT, respectively, for 14 and 21 days. The characterization, encapsulation efficiency and release kinetics of MT in lipid-based nanoparticles were assessed in vitro. The results showed that the MT-loaded nanoparticles were spherical, ranging from 80 to 125 nm in size, and had a negative charge with a narrow particle distribution. The APG-NLC loaded with MT provided higher physical stability and encapsulation efficacy than the NLC. The release rate constants of MT from MT-NLC and MT-APG-NLC were higher than those of free MT, which is insoluble in aqueous media. There was no significant difference in survival between the fish administered MT or the those fed orally with MT-APG-NLC fish. According to the logistic regression analysis, the sex reversal efficacy of MT-APG-NLC (30 ppm) and MT (60 ppm), resulted in significantly higher numbers of males after 21 days of treatment compared with the controls. The production cost of MT-APG-NLC (30 ppm) after 21 days of treatment was reduced by 32.9% compared with the conventional MT treatment group (60 ppm). In all the treatments, the length-weight relationship (LWR) showed negatively allomeric growth behavior (b < 3), with a relative condition factor (Kn) of more than 1. Therefore, MT-APG-NLC (30 ppm) would seem to be a promising, cost-effective way to reduce the dose of MT used for the masculinization of farmed red tilapia.
Collapse
Affiliation(s)
- Jakarwan Yostawonkul
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Sirikorn Kitiyodom
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittipat Supchukun
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nutthanit Thumrongsiri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Nattika Saengkrit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Komkiew Pinpimai
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Amin Hajitou
- Cancer Phagotherapy, Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | | | - Kasem Rattanapinyopituk
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Masashi Maita
- Laboratory of Fish Health Management, Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477, Japan
| | - Manoj Tukaram Kamble
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Teerapong Yata
- Unit of Biochemistry, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nopadon Pirarat
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Villarreal-Reyes C, Díaz de León-Martínez L, Flores-Ramírez R, González-Lara F, Villarreal-Lucio S, Vargas-Berrones KX. Ecotoxicological impacts caused by high demand surfactants in Latin America and a technological and innovative perspective for their substitution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151661. [PMID: 34780823 DOI: 10.1016/j.scitotenv.2021.151661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, water pollution represents a great concern due to population growth, industrialization, and urbanization. Every day hazardous chemical products for humans and aquatic organisms are disposed of arbitrarily from homes and industries. Even though detergents are considered an essential market, there is evidence of environmental impacts caused by surfactants like nonylphenol ethoxylate (NPE) and linear alkylbenzene sulfonates (LAS). Regulations about maximum allowable concentrations in sewage, surface water, and drinking water are scarce or null, mostly in developing countries like Latin American countries. Therefore, this review explores these two common toxic surfactants (NPE and LAS) and proposes a technological, innovative, and ecological perspective on detergents. Also, it establishes a starting point for industries to minimize adverse effects on humans and environmental health caused by these compounds.
Collapse
Affiliation(s)
- Cecilia Villarreal-Reyes
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí. Av. Manuel Nava No. 6, C.P. 78260, San Luis Potosí, Mexico
| | - Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, Mexico
| | - Rogelio Flores-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, Mexico
| | - Fabiola González-Lara
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí. Av. Manuel Nava No. 6, C.P. 78260, San Luis Potosí, Mexico
| | - Samantha Villarreal-Lucio
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, Mexico
| | - Karla Ximena Vargas-Berrones
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí. Av. Manuel Nava No. 6, C.P. 78260, San Luis Potosí, Mexico.
| |
Collapse
|
3
|
Synthetic and Natural Surfactants for Potential Application in Mobilization of Organic Contaminants: Characterization and Batch Study. WATER 2022. [DOI: 10.3390/w14081182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, we investigated the abilities of five sugar-based synthetic surfactants and biosurfactants from three different families (i.e., alkyl polyglycoside (APG), sophorolipid (SL), and rhamnolipid (RL)) to dissolve and mobilize non-aqueous phase liquid (NAPL) components, i.e., toluene and perchloroethylene (PCE), adsorbed on porous matrices. The objective of this study was to establish a benchmark for the selection of suitable surfactants for the flushing aquifer remediation technique. The study involved a physicochemical characterization of the surfactants to determine the critical micelle concentration (CMCs) and interfacial properties. Subsequently, a batch study, through the construction of adsorption isotherms, made it possible to evaluate the surfactants’ capacities in contaminant mobilization via the reduction of their adsorptions onto a reference adsorbent material, a pine wood biochar (PWB). The results indicate that a synthetic surfactant from the APG family with a long fatty acid chain and a di-rhamnolipid biosurfactant with a shorter hydrophobic group offered the highest efficiency values; they reduced water surface tension by up to 54.7% and 52%, respectively. These two surfactants had very low critical micelle concentrations (CMCs), 0.0071 wt% and 0.0173 wt%, respectively; this is critical from an economical point of view. The batch experiments showed that these two surfactants, at concentrations just five times their CMCs, were able to reduce the adsorption of toluene on PWB by up to 74% and 65%, and of PCE with APG and RL by up to 65% and 86%, respectively. In general, these results clearly suggest the possibility of using these two surfactants in surfactant-enhanced aquifer remediation technology.
Collapse
|
5
|
Biological Evaluation of Oil-in-Water Microemulsions as Carriers of Benzothiophene Analogues for Dermal Applications. Biomimetics (Basel) 2021; 6:biomimetics6010010. [PMID: 33514031 PMCID: PMC7931112 DOI: 10.3390/biomimetics6010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
During the last decade, many studies have been reported on the design and formulation of novel drug delivery systems proposed for dermal or transdermal administration. The efforts focus on the development of biocompatible nanodispersions that can be delivered to the skin and treat severe skin disorders, including cancer. In this context, oil-in-water (O/W) microemulsions have been developed to encapsulate and deliver lipophilic bioactive molecules for dermal application. An O/W biocompatible microemulsion composed of PBS buffer, Tween 80, and triacetin was assessed for its efficacy as a drug carrier of DPS-2, a lead compound, initially designed in-house to inhibit BRAFV600E oncogenic kinase. The system was evaluated through both in vitro and ex vivo approaches. The cytotoxic effect, in the presence and absence of DPS-2, was examined through the thiazolyl blue tetrazolium bromide (MTT) cell proliferation assay using various cell lines. Further investigation through Western blotting revealed that cells died of necrosis. Porcine ear skin was used as a skin model to evaluate the degree of permeation of DPS-2 through skin and assess its retention. Through the ex vivo experiments, it was clarified that encapsulated DPS-2 was distributed within the full thickness of the stratum corneum (SC) and had a high affinity to hair follicles.
Collapse
|
6
|
Talianu MT, Dinu-Pîrvu CE, Ghica MV, Anuţa V, Jinga V, Popa L. Foray into Concepts of Design and Evaluation of Microemulsions as a Modern Approach for Topical Applications in Acne Pathology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2292. [PMID: 33228156 PMCID: PMC7699607 DOI: 10.3390/nano10112292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/19/2023]
Abstract
With a fascinating complexity, governed by multiple physiological processes, the skin is considered a mantle with protective functions which during lifetime are frequently impaired, triggering dermatologic disorders. As one of the most prevalent dermatologic conditions worldwide, characterized by a complex pathogenesis and a high recurrence, acne can affect the patient's quality of life. Smart topical vehicles represent a good option in the treatment of a versatile skin condition. By surpassing the stratum corneum known for diffusional resistance, a superior topical bioavailability can be obtained at the affected place. In this direction, the literature study presents microemulsions as a part of a condensed group of modern formulations. Microemulsions are appreciated for their superior profile in matters of drug delivery, especially for challenging substances with hydrophilic or lipophilic structures. Formulated as transparent and thermodynamically stable systems, using simplified methods of preparation, microemulsions have a simple and clear appearance. Their unique structures can be explained as a function of the formulation parameters which were found to be the mainstay of a targeted therapy.
Collapse
Affiliation(s)
- Marina-Theodora Talianu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Valentina Anuţa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Viorel Jinga
- Department of Clinical Sciences, no.3, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| |
Collapse
|