1
|
Hou B, Yang F, Hu C, Liu C, Xiao X, Chen Y, Huang X, Xie S. A Novel Bifunctional Nanoplatform with Aggregation-Induced Emission Property for Efficient Photodynamic Killing of Bacteria and Wound Healing. Infect Drug Resist 2022; 15:7351-7361. [PMID: 36540099 PMCID: PMC9760083 DOI: 10.2147/idr.s391272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/06/2022] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND Photodynamic antimicrobial therapy (PDAT) has been extensively studied because of its potential applications such as precise controllability, high spatiotemporal accuracy, and non-invasiveness. More importantly, it is difficult for bacteria to develop resistance to the aforementioned PDATs. However, the selectivity of traditional PDAT methods to bacteria is generally poor, so it has been proposed to introduce positively charged components such as quaternary ammonium salts to enhance the targeting of bacteria; however, they always possess high toxicity to normal cells. As a result, measures should be taken to enhance the targeting of bacteria and avoid side effects on normal cells. METHODS AND RESULTS In our work, we creatively design a nanoplatform with high anti-bacterial efficiency, low side effects and its size is approximately 121 nm. BSA, as a nanocarrier, encapsulates the photosensitizer (E)-4-(4-(diphenylamino)styryl)-1-methylpyridin-1-ium with AIE properties named as BSA-Tpy, which increases its circulation time in vivo and improves the biocompatibility. Under acidic conditions (pH = 5.0), the surface positive charge of the BSA-Tpy is increased to +18.8 mV due to protonation of amine residues to achieve the targeting effect on bacteria. Besides, under the irradiation of white light, the BSA-Tpy will produce ROS to kill bacteria efficiently about 99.99% for both Gram-positive and Gram-negative bacteria, which shows the potential application value for the treatment of infected wounds. CONCLUSION We have developed a feasible method for photodynamic antibacterial therapy, possessing excellent biocompatibility and high antibacterial efficiency with good fluorescence imaging property.
Collapse
Affiliation(s)
- Biao Hou
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Fen Yang
- Department of Infectious Diseases, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Chaotao Hu
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Changxiong Liu
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Xiangjun Xiao
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Yanming Chen
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Xiongjie Huang
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Songlin Xie
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| |
Collapse
|
2
|
Hassan NA, Darwesh OM, Smuda SS, Altemimi AB, Hu A, Cacciola F, Haoujar I, Abedelmaksoud TG. Recent Trends in the Preparation of Nano-Starch Particles. Molecules 2022; 27:5497. [PMID: 36080267 PMCID: PMC9457580 DOI: 10.3390/molecules27175497] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Starch is affected by several limitations, e.g., retro-gradation, high viscosity even at low concentrations, handling issues, poor freeze-thaw stability, low process tolerance, and gel opacity. In this context, physical, chemical, and enzymatic methods have been investigated for addressing such limitations or adding new attributes. Thus, the creation of biomaterial-based nanoparticles has sparked curiosity. Because of that, single nucleotide polymorphisms are gaining a lot of interest in food packaging technology. This is due to their ability to increase the mechanical and water vapor resistance of the matrix, as well as hide its re-crystallization during storage in high-humidity atmospheres and enhance the mechanical properties of films when binding in paper machines and paper coating. In medicine, single nucleotide polymorphisms (SNPs) are suitable as carriers in the field of drug delivery for immobilized bioactive or therapeutic agents, as well as wastewater treatments as an alternative to expensive activated carbons. Starch nanoparticle preparations can be performed by hydrolysis via acid hydrolysis of the amorphous part of a starch molecule, the use of enzymes such as pullulanase or isoamylase, or a combination of two regeneration and mechanical treatments with the employment of extrusion, irradiation, ultrasound, or precipitation. The possibility of obtaining cheap and easy-to-use methods for starch and starch derivative nanoparticles is of fundamental importance. Nano-precipitation and ultra-sonication are rather simple and reliable methods for nanoparticle production. The process involves the addition of a diluted starch solution into a non-solvent, and ultra-sonication aims to reduce the size by breaking the covalent bonds in polymeric material due to intense shear forces or mechanical effects associated with the collapsing of micro-bubbles by sound waves. The current study focuses on starch nanoparticle manufacturing, characterization, and emerging applications.
Collapse
Affiliation(s)
- Nora Ali Hassan
- Food Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Osama M. Darwesh
- Agricultural Microbiology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Sayed Saad Smuda
- Food Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Aijun Hu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
| | - Imane Haoujar
- Laboratory of Biotechnology and Applied Microbiology, Department of Biology, Faculty of Sciences of Tetouan, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| | | |
Collapse
|
3
|
Visentini FF, Perez AA, Santiago LG. Bioactive compounds: Application of albumin nanocarriers as delivery systems. Crit Rev Food Sci Nutr 2022; 63:7238-7268. [PMID: 35238254 DOI: 10.1080/10408398.2022.2045471] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enriched products with bioactive compounds (BCs) show the capacity to produce a wide range of possible health effects. Most BCs are essentially hydrophobic and sensitive to environmental factors; so, encapsulation becomes a strategy to solve these problems. Many globular proteins have the intrinsic ability to bind, protect, encapsulate, and introduce BCs into nutraceutical or pharmaceutical matrices. Among them, albumins as human serum albumin (HSA), bovine serum albumin (BSA), ovalbumin (OVA) and α-lactalbumin (ALA) are widely abundant, available, and applied in many industrial sectors, becoming promissory materials to encapsulate BCs. Therefore, this review focuses on researches about the main groups of natural origin BCs (namely phenolic compounds, lipids, vitamins, and carotenoids), the different types of nanostructures based on albumins to encapsulate them and the main fields of application for BCs-loaded albumin systems. In this context, phenolic compounds (catechins, quercetin, and chrysin) are the most extensively BCs studied and encapsulated in albumin-based nanocarriers. Other extensively studied subgroups are stilbenes and curcuminoids. Regarding lipids and vitamins; terpenes, carotenoids (β-carotene), and xanthophylls (astaxanthin) are the most considered. The main application areas of BCs are related to their antitumor, anti-inflammatory, and antioxidant properties. Finally, BSA is the most used albumin to produced BCs-loaded nanocarriers.
Collapse
Affiliation(s)
- Flavia F Visentini
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Adrián A Perez
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Liliana G Santiago
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
4
|
Onyeaka H, Miri T, Hart A, Anumudu C, Nwabor OF. Application of Ultrasound Technology in Food Processing with emphasis on bacterial spores. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | - Abarasi Hart
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | - Christian Anumudu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | - Ozioma Forstinus Nwabor
- Biological Science, Faculty of Science with Infectious Diseases, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
5
|
Synthesis of Starch Nanoparticles and Their Applications for Bioactive Compound Encapsulation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104547] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, starch nanoparticles (SNPs) have attracted growing attention due to their unique properties as a sustainable alternative to common nanomaterials since they are natural, renewable and biodegradable. SNPs can be obtained by the breakdown of starch granules through different techniques which include both physical and chemical methods. The final properties of the SNPs are strongly influenced by the synthesis method used as well as the operational conditions, where a controlled and monodispersed size is crucial for certain bioapplications. SNPs are considered to be a good vehicle to improve the controlled release of many bioactive compounds in different research fields due to their high biocompatibility, potential functionalization, and high surface/volume ratio. Their applications are frequently found in medicine, cosmetics, biotechnology, or the food industry, among others. Both the encapsulation properties as well as the releasing processes of the bioactive compounds are highly influenced by the size of the SNPs. In this review, a general description of the different types of SNPs (whole and hollow) synthesis methods is provided as well as on different techniques for encapsulating bioactive compounds, including direct and indirect methods, with application in several fields. Starches from different botanical sources and different bioactive compounds are compared with respect to the efficacy in vitro and in vivo. Applications and future research trends on SNPs synthesis have been included and discussed.
Collapse
|