1
|
Li Y, Cheng Y, Cai Y, Duan Z, Xu H, Huang Y, Ma X, Xin X, Yin L. Novel Small-Molecule Treatment and Emerging Biological Therapy for Psoriasis. Biomedicines 2025; 13:781. [PMID: 40299379 PMCID: PMC12025338 DOI: 10.3390/biomedicines13040781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 04/30/2025] Open
Abstract
Psoriasis is an immune-related disorder that is marked by abnormal thickening of the skin, the rapid multiplication of keratinocytes, and complex interactions between immune cells and the affected areas. Although psoriasis cannot currently be cured, drugs can alleviate symptoms by regulating immune homeostasis and preventing comorbidities. There are many types of drugs to treat psoriasis: small-molecule drugs, including corticosteroids; retinoids; vitamin D analogs; and immunosuppressants, such as glucocorticoid ointment, tretinoin cream, methotrexate tablets, etc. Macromolecular biological drugs, such as Certolizumab, Secukinumab, Guselkumab, etc., include monoclonal antibodies that target various inflammatory signaling pathways. Compared with traditional small-molecule drugs, biological therapies offer better targeting and lower systemic side effects, but their high costs and invasive administration modes constrict their widespread use. Spesolimab is the latest biological agent used to target the interleukin-36 receptor (IL-36R) to be approved for market use, which significantly reduces the risk of general pustular psoriasis (GPP) flare by 84%. Additionally, there are several biological agents used to target the interleukin-23/T helper 17 cell pathway that have already entered Phase II and III clinical trials. At present, the first-line therapeutic strategy for mild psoriasis is topical administration. Systemic therapy and phototherapy are preferred for treating moderate to severe types. However, the current therapeutic drugs for psoriasis cannot completely meet the clinical needs. More advanced drug delivery systems with optimized target effects and better bioavailability are required. Nanocarriers are emerging for the delivery of proteins, nucleic acids, and cell-based therapies. In this review, we analyze the current status of psoriasis therapeutics and discuss novel delivery systems for diverse psoriasis drugs, as well as emerging cell-based therapies. We also summarize the therapeutic effectiveness of different delivery strategies.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.L.); (Y.C.); (Y.C.); (Z.D.); (H.X.); (Y.H.)
| | - Yiheng Cheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.L.); (Y.C.); (Y.C.); (Z.D.); (H.X.); (Y.H.)
| | - Yuchen Cai
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.L.); (Y.C.); (Y.C.); (Z.D.); (H.X.); (Y.H.)
| | - Zhenduo Duan
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.L.); (Y.C.); (Y.C.); (Z.D.); (H.X.); (Y.H.)
| | - Hong Xu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.L.); (Y.C.); (Y.C.); (Z.D.); (H.X.); (Y.H.)
| | - Yunan Huang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.L.); (Y.C.); (Y.C.); (Z.D.); (H.X.); (Y.H.)
| | - Xiaonan Ma
- The Public Laboratory Platform of China Pharmaceutical University, Nanjing 210009, China;
| | - Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.L.); (Y.C.); (Y.C.); (Z.D.); (H.X.); (Y.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.L.); (Y.C.); (Y.C.); (Z.D.); (H.X.); (Y.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Kaur T, Hinge N, Pukale S, Ansari MN, Thajudeen KY, Nandave M, Upadhyay J. Emerging Therapeutic Agents and Nanotechnology-Driven Innovations in Psoriasis Management. FRONT BIOSCI-LANDMRK 2025; 30:27910. [PMID: 40152381 DOI: 10.31083/fbl27910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 03/29/2025]
Abstract
Psoriasis has been a rising concern for over a decade, imposing significant challenges to individuals and society. Traditional topical therapy is non-targeted and acts systemically, with associated side effects. This increases the global burden both socially and economically. This review covers the evolution of drug molecules and nanotechnology-based approaches for the topical treatment of psoriasis, a chronic inflammatory skin disorder with no known etiology. Nanotechnology-based approaches offer promising solutions by reducing side effects, providing targeted delivery, protecting drug molecules from degradation, enhancing skin retention, and providing controlled release. Researchers have investigated the incorporation of various conventional and non-conventional therapeutic agents into nanocarriers for psoriasis treatment. The current understanding of the disease and its treatment using various therapeutic agents combined with novel formulation strategies will reduce the duration of treatment and improve the quality of life in psoriatic disease conditions.
Collapse
Affiliation(s)
- Tarnjot Kaur
- Department of Pharmaceutical Sciences, School of Health Science and Technology, UPES, 248007 Dehradun, Uttarakhand, India
| | - Nikita Hinge
- School of Pharmacy, Dr Vishwanath Karad MIT World Peace University, 411038 Pune, Maharashtra, India
| | - Sudeep Pukale
- Lupin Research Park, 412115 Pune, Maharashtra, India
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942 Al-Kharj, Saudi Arabia
| | - Kamal Y Thajudeen
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, 62529 Abha, Saudi Arabia
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), 110017 New Delhi, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Science and Technology, UPES, 248007 Dehradun, Uttarakhand, India
| |
Collapse
|
3
|
Kumar S, Nair AB, Kadian V, Dalal P, Jangir BL, Aldhubiab B, Almuqbil RM, Alnaim AS, Alwadei N, Rao R. Development and Evaluation of Hydrogel-Based Sulfasalazine-Loaded Nanosponges for Enhanced Topical Psoriasis Therapy. Pharmaceuticals (Basel) 2025; 18:391. [PMID: 40143167 PMCID: PMC11944453 DOI: 10.3390/ph18030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background: The low solubility and poor skin permeability of sulfasalazine (SLZ) present significant challenges for its effective topical delivery. The objective of the current investigation is to formulate a hydrogel-based SLZ-loaded cyclodextrin nanosponge for topical therapy in psoriasis. Methods: SLZ-loaded nanosponges were prepared by the melt polymerization method and evaluated for physiochemical characteristics, drug release, and cytocompatibility. The selected nanosponges (SLZ-NS4) were transformed to hydrogel and further evaluated for rheology, texture, safety, skin permeability, and in vivo for anti-psoriatic effect in mouse tail and imiquimod-induced psoriasis-like inflammation models in mice. Results: Physiochemical data confirms nanoscale architecture, drug inclusion in nanosponges, crystalline structure, and formulation stability. The release profile of SLZ-NS4 revealed sustained release behavior (22.98 ± 2.24% in 3 h). Cytotoxicity assays indicated negligible toxicity against THP1 cells, resulting in higher viability of cells than pure SLZ (p < 0.05). The HET-CAM assay confirmed the safety, while confocal laser scanning microscopy demonstrated deeper skin permeation of SLZ. In the mouse tail model, a remarkable decline in relative epidermal thickness, potential improvement in percent orthokeratosis, and drug activity with respect to control was observed in animals treated with SLZ-NS4 hydrogel. The efficiency of the developed SLZ-NS4-loaded hydrogel in treating psoriasis was confirmed by the decline in PASI score (81.68 ± 3.61 and 84.86 ± 5.74 with 1 and 2% w/v of SLZ-NS-HG). Histopathological analysis and assessment of oxidative stress markers revealed the profound anti-psoriatic potential of the fabricated SLZ-NS4 hydrogel. Conclusions: These findings highlight the profound potential of the developed delivery system as an effective topical therapy for psoriasis.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (S.K.); (V.K.); (P.D.)
- Atam Institute of Pharmacy, Om Sterling Global University, Hisar 125001, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.A.); (R.M.A.); (A.S.A.); (N.A.)
| | - Varsha Kadian
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (S.K.); (V.K.); (P.D.)
- Department of Pharmacy, School of Health Sciences, Sushant University, Gurugram 122003, India
| | - Pooja Dalal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (S.K.); (V.K.); (P.D.)
| | - Babu Lal Jangir
- Department of Veterinary Pathology, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India;
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.A.); (R.M.A.); (A.S.A.); (N.A.)
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.A.); (R.M.A.); (A.S.A.); (N.A.)
| | - Ahmed S. Alnaim
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.A.); (R.M.A.); (A.S.A.); (N.A.)
| | - Nouf Alwadei
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.A.); (R.M.A.); (A.S.A.); (N.A.)
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (S.K.); (V.K.); (P.D.)
| |
Collapse
|
4
|
Kshirsagar SM, Viswaroopan N, Ghosh M, Junaid MSA, Haque S, Khan J, Muzaffar S, Srivastava RK, Athar M, Banga AK. Development of 4-phenylbutyric acid microsponge gel formulations for the treatment of lewisite-mediated skin injury. Drug Deliv Transl Res 2025; 15:638-654. [PMID: 38802678 PMCID: PMC11599469 DOI: 10.1007/s13346-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
Lewisite, a chemical warfare agent, causes skin blisters, erythema, edema, and inflammation, requiring mitigation strategies in case of accidental or deliberate exposure. 4-phenyl butyric acid (4-PBA), a chemical chaperone, reduces endoplasmic reticulum stress and skin inflammation. The study aimed to encapsulate 4-PBA in microsponges for effective, sustained delivery against lewisite injury. Porous microsponges in a topical gel would potentially sustain delivery and improve residence time on the skin. Microsponges were developed using the quasi-emulsion solvent diffusion method with Eudragit RS100. Optimized formulation showed 10.58%w/w drug loading was incorporated in a carboxymethylcellulose (CMC) and Carbopol gel for in vitro release and permeation testing using dermatomed human skin. A sustained release was obtained from all vehicles in the release study, and IVPT results showed that compared to the control (41.52 ± 2.54 µg/sq.cm), a sustained permeation profile with a reduced delivery was observed for microsponges in PBS (14.16 ± 1.23 µg/sq.cm) along with Carbopol 980 gel (12.55 ± 1.41 µg/sq.cm), and CMC gel (10.09 ± 1.23 µg/sq.cm) at 24 h. Optimized formulation showed significant protection against lewisite surrogate phenyl arsine oxide (PAO) challenged skin injury in Ptch1+/-/SKH-1 hairless mice at gross and molecular levels. A reduction in Draize score by 29%, a reduction in skin bifold thickness by 8%, a significant reduction in levels of IL-1β, IL6, and GM-CSF by 54%, 30%, and 55%, respectively, and a reduction in apoptosis by 31% was observed. Thus, the translational feasibility of 4-PBA microsponges for effective, sustained delivery against lewisite skin injury is demonstrated.
Collapse
Affiliation(s)
- Sharvari M Kshirsagar
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Nethra Viswaroopan
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Meheli Ghosh
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Mohammad Shajid Ashraf Junaid
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Safiya Haque
- Department of Dermatology, University of Alabama at Birmingham, UAB Research Center of Excellence in Arsenicals, Birmingham, AL, USA
| | - Jasim Khan
- Department of Dermatology, University of Alabama at Birmingham, UAB Research Center of Excellence in Arsenicals, Birmingham, AL, USA
| | - Suhail Muzaffar
- Department of Dermatology, University of Alabama at Birmingham, UAB Research Center of Excellence in Arsenicals, Birmingham, AL, USA
| | - Ritesh K Srivastava
- Department of Dermatology, University of Alabama at Birmingham, UAB Research Center of Excellence in Arsenicals, Birmingham, AL, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, UAB Research Center of Excellence in Arsenicals, Birmingham, AL, USA
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, 3001 Mercer University Drive, Atlanta, GA 30341, USA.
| |
Collapse
|
5
|
Qureshi S, Alavi SE, Mohammed Y. Microsponges: Development, Characterization, and Key Physicochemical Properties. Assay Drug Dev Technol 2024; 22:229-245. [PMID: 38661260 DOI: 10.1089/adt.2023.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Microsponges are promising drug delivery carriers with versatile characteristics and controlled release properties for the delivery of a wide range of drugs. The microsponges will provide an optimized therapeutic effect, when delivered at the site of action without rupturing, then releasing the cargo at the predetermined time and area. The ability of the microsponges to effectively deliver the drug in a controlled manner depends on the material composition. This comprehensive review entails knowledge on the design parameters of an optimized microsponge drug delivery system and the controlled release properties of microsponges that reduces the side effects of drugs. Furthermore, the review delves into the fabrication techniques of microsponges, the mechanism of drug release from the microsponges, and the regulatory requirements of the U.S. Food and Drug Administration (FDA) for the successful marketing of microsponge formulation. The review also examines the patented formulations of microsponges. The prospects of these sophisticated drug delivery systems for improved clinical outcomes are highlighted.
Collapse
Affiliation(s)
- Sundus Qureshi
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Yehia RM, Teaima MH, Ragaie MH, Elmazar MM, Attia DA, El-Nabarawi MA. Resolving acne with optimized adapalene microspongeal gel, in vivo and clinical evaluations. Sci Rep 2024; 14:1359. [PMID: 38228631 DOI: 10.1038/s41598-024-51392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
In our pursuit of enhancing acne treatment while minimizing side effects, we developed tailored Adapalene microsponges (MS) optimized using a Box-Behnken design 33. The independent variables, Eudragit RS100 percentage in the polymer mixture, organic phase volume, and drug to polymer percentage, were explored. The optimized formulation exhibited remarkable characteristics, with a 98.3% ± 1.6 production yield, 97.3% ± 1.64 entrapment efficiency, and a particle size of 31.8 ± 1.1 µm. Notably, it achieved a 24 h cumulative drug release of 75.1% ± 1.4. To delve deeper into its efficacy, we evaluated the optimized microspongeal-gel in vitro, in vivo, and clinically. It demonstrated impressive retention in the pilosebaceous unit, a target for acne treatment. Comparative studies between our optimized Adapalene microspongeal gel and marketed Adapalene revealed superior performance. In vivo studies on Propionibacterium acnes-infected mice ears showed a remarkable 97% reduction in ear thickness, accompanied by a significant decrease in inflammatory signs and NF-κB levels, as confirmed by histopathological and histochemical examination. Moreover, in preliminary clinical evaluation, it demonstrated outstanding effectiveness in reducing comedonal lesions while causing fewer irritations. This not only indicates its potential for clinical application but also underscores its ability to enhance patient satisfaction, paving the way for future commercialization.
Collapse
Affiliation(s)
- Rania M Yehia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Suez Desert Road, El Sherouk City, Cairo, 1183, Egypt.
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maha H Ragaie
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Al Minya, Egypt
| | - Mohamed M Elmazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Dalia A Attia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Suez Desert Road, El Sherouk City, Cairo, 1183, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Mehmood Y, Shahid H, ul Huq UI, Rafeeq H, Khalid HMB, Uddin MN, Kazi M. Microsponge-Based Gel Loaded with Immunosuppressant as a Simple and Valuable Strategy for Psoriasis Therapy: Determination of Pro-Inflammatory Response through Cytokine IL-2 mRNA Expression. Gels 2023; 9:871. [PMID: 37998961 PMCID: PMC10670748 DOI: 10.3390/gels9110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Tacrolimus (TL) is a topical calcineurin inhibitor immunosuppressive drug widely used to manage various skin disorders. Herein, we report a TL-loaded microsphere gel formulation with severe atopic dermatitis effects that are required to manage skin disorders. The current study adopted a modified emulsion solvent evaporation technique to synthesize TL-loaded microspheres, which were further converted into gels for skin use. Characterization of the synthesized formulation was performed by differential dynamic light scattering, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray crystallography, Brunauer-Emmett-Teller (BET) analysis, differential scanning calorimetry, and drug release. A Franz diffusion cell was used to study the diffusion of TL for up to 8 h at pH 6.8 and 5.5. Evaluation of cell viability was determined by MTT assay and showed higher IC50 values compared to the plain drug. RNA extraction, real-time polymerase chain reaction (RT-PCR), and reverse transcription were also performed to determine the expression levels of the anti-inflammatory cytokine IL-2. Particle size determination was performed by a zeta sizer, and the TL microsphere size was 1745 ± 70 nm with a good polydispersity (0.337 ± 0.12). The drug entrapment efficiency was also very good at 60% ± 10, and the drug release was 93.9% ± 3.5 within 8 h. An in vitro diffusion study of the formulation also showed improved permeability at both pH values (4.5 and 5.5). The findings of the hemolytic tests demonstrated that TL-MG at concentrations of 50, 100, and 200 mg/mL did not produce any hemolysis. A dose-dependent pattern of cytotoxicity was found during the cell viability assay, with an IC50 value of 787.55 ± 12.78 µg/mL. There was a significant decrease in the IL-2 level in the TL-MG group compared to the other groups. TL-MG microspheres were nontoxic carriers for tacrolimus delivery, with greater loading capacity, a significant release profile, and enhanced cellular uptake with improved permeability.
Collapse
Affiliation(s)
- Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Hira Shahid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan;
| | | | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad Campus, Faisalabad P.O. Box 38000, Pakistan;
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Hafiz Muhammad Bilal Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Mohammad N. Uddin
- College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA;
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Raina N, Rani R, Thakur VK, Gupta M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS OMEGA 2023; 8:19145-19167. [PMID: 37305231 PMCID: PMC10249123 DOI: 10.1021/acsomega.2c08016] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
Skin, the largest organ in humans, is an efficient route for the delivery of drugs as it circumvents several disadvantages of the oral and parenteral routes. These advantages of skin have fascinated researchers in recent decades. Drug delivery via a topical route includes moving the drug from a topical product to a locally targeted region with dermal circulation throughout the body and deeper tissues. Still, due to the skin's barrier function, delivery through the skin can be difficult. Drug delivery to the skin using conventional formulations with micronized active components, for instance, lotions, gels, ointments, and creams, results in poor penetration. The use of nanoparticulate carriers is one of the promising strategies, as it provides efficient delivery of drugs through the skin and overcomes the disadvantage of traditional formulations. Nanoformulations with smaller particle sizes contribute to improved permeability of therapeutic agents, targeting, stability, and retention, making nanoformulations ideal for drug delivery through a topical route. Achieving sustained release and preserving a localized effect utilizing nanocarriers can result in the effective treatment of numerous infections or skin disorders. This article aims to evaluate and discuss the most recent developments of nanocarriers as therapeutic agent vehicles for skin conditions with patent technology and a market overview that will give future directions for research. As topical drug delivery systems have shown great preclinical results for skin problems, for future research directions, we anticipate including in-depth studies of nanocarrier behavior in various customized treatments to take into account the phenotypic variability of the disease.
Collapse
Affiliation(s)
- Neha Raina
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Radha Rani
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, SRUC (Scotland’s Rural College), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Madhu Gupta
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| |
Collapse
|
9
|
Yehia RM, Attia DA, Elmazar MM, El-Nabarawi MA, Teaima MH. Screening of Adapalene Microsponges Fabrication Parameters with Insight on the In vitro Biological Effectiveness. Drug Des Devel Ther 2022; 16:3847-3864. [PMID: 36388080 PMCID: PMC9644220 DOI: 10.2147/dddt.s383051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/18/2022] [Indexed: 03/25/2024] Open
Abstract
PURPOSE The objective of the present study was to scrutinize the microsponges (MS) as a carrier system using Adapalene (ADA) as a model drug. METHODS Data modelling was implemented using Plackett-Burman design to identify the main variables affecting the formulation of ADA-MS. The adopted method of preparation for MS was quasi-emulsion solvent diffusion method. The nominated independent variables were volume of organic phase, sonication time, stirring speed, drug percent, polymer type, emulsifier concentration, and method of organic phase addition. As for the dependent variables, they included entrapment efficiency (E.E.%), production yield (P.Y.%), particle size (P.S.) and morphology. Furthermore, selected ADA loaded microsponges (ADA-MS) were in vitro assayed for their biological activities via cytotoxicity, UVA irradiation and cell viability, and antimicrobial activity. RESULTS The study indicated that the drug percent, polymer type and surfactant concentration have the key significant effect on E.E.% and P.Y.%, while, the drug percent, stirring speed and volume of organic phase have had a significant effect on P.S. and their morphology. Furthermore, ADA-MS had a momentous cytotoxic effect on A431 and M10 cell-lines with exceptional enrichment when the polymer Eudragit RS100 was used. Also, the ADA-MS increased the cell viability after UVA irradiation on HFB-4 cell-line by 14% to 43%, especially when using Ethyl Cellulose as a polymer. Lastly, the antimicrobial activity of ADA against Propionibacterium acnes was boosted when incorporated into MS. CONCLUSION The Plackett-Burman design proved its impact in discerning preparation variables affecting the quality of ADA-MS formulation, with heightening of the in vitro biological activities of ADA. Thus, MS was presumed to be an auspicious carrier system for ADA.
Collapse
Affiliation(s)
- Rania M Yehia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Dalia A Attia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Mohamed M Elmazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Sun Z. Optimization of clobetasol propionate loaded niosomal gel for the treatment of psoriasis: Ex vivo and efficacy study. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Zhe Sun
- The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
11
|
Nair AB, Kumar S, Dalal P, Nagpal C, Dalal S, Rao R, Sreeharsha N, Jacob S. Novel Dermal Delivery Cargos of Clobetasol Propionate: An Update. Pharmaceutics 2022; 14:pharmaceutics14020383. [PMID: 35214115 PMCID: PMC8877216 DOI: 10.3390/pharmaceutics14020383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Dermal disorders such as psoriasis and eczema are associated with modifications in the chemical and molecular composition of the skin. Clobetasol propionate (CP), a superpotent topical glucocorticoid, is widely used for the therapeutic management of various skin conditions, owing to its strong anti-inflammatory, antipruritic, vasoconstrictive, and antiproliferative activities. Safety studies demonstrated that CP is safer for a shorter period, however, with prolonged application, it shows secondary side effects such as photosensitivity, Cushing-like syndrome, allergic contact dermatitis, osteonecrosis, hypopigmentation, steroid acne, and skin atrophy. Therefore, the US FDA (United States Food and Drug Administration) has restricted the usage of CP to not more than 15 days. Research scientists addressed its several formulations and drug delivery issues, such as low water solubility, less stability, photodegradation, and poor absorption, by incorporating them into novel nanobased delivery platforms. With the utilization of these technologies, these drawbacks of CP have been resolved to a large extent to reestablish this moiety. This article explores the physicochemical properties and mechanism of action of CP. Additionally, an attempt has been made to discover and highlight the possible features of the novel nanosystems, including nanoemulsions, nanosponges, solid lipid nanoparticles, nanostructured lipid carriers, and nanogels, reported for CP. The stability and safety concerns of CP, along with its commercial status, are also discussed.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Hofuf 31982, Al-Ahsa, Saudi Arabia;
- Correspondence: (A.B.N.); (R.R.); Tel.: +966-536219868 (A.B.N.); +91-9991048560 (R.R.)
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (S.K.); (P.D.); (C.N.); (S.D.)
| | - Pooja Dalal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (S.K.); (P.D.); (C.N.); (S.D.)
| | - Chahat Nagpal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (S.K.); (P.D.); (C.N.); (S.D.)
| | - Sweta Dalal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (S.K.); (P.D.); (C.N.); (S.D.)
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (S.K.); (P.D.); (C.N.); (S.D.)
- Correspondence: (A.B.N.); (R.R.); Tel.: +966-536219868 (A.B.N.); +91-9991048560 (R.R.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Hofuf 31982, Al-Ahsa, Saudi Arabia;
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| |
Collapse
|
12
|
Rahman M, Almalki WH, Panda SK, Das AK, Alghamdi S, Soni K, Hafeez A, Handa M, Beg S, Rahman Z. Therapeutic application of microsponges based drug delivery system. Curr Pharm Des 2022; 28:595-608. [PMID: 35040411 DOI: 10.2174/1381612828666220118121536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022]
Abstract
Microsponges delivery system (MDS) is highly porous, cross-linked based polymeric systems, that activates in the presence of temperature, rubbing and pH. MDS offers wide range of advantage, like controlled drug release, site-specific action, stable over a broad range of pH, poor irritation, cost effective, improved patient compliance. They can be transformed into various dosage forms like creams, gels, and lotions. MDS based system are suitable for treatment of topical disorders like acne, psoriasis, dandruff, eczema, scleroderma, hair loss, skin cancer, and other dreadful diseases. MDS application for drug delivery is not limited to topical drug delivery but also explored for oral, parenteral and pulmonary drug delivery. Microsponges were studied for colon targeting of drugs and genes. Additionally, MDS has wide application for sunscreen, cosmetics, and over the counter (OTC) products. Furthermore, MDS does not actuate any irritation, genotoxicity, immunogenicity or cytotoxicity. Therefore, this review extensively highlights about microsponges, their advantages, key factors affecting the micro-sponges' characteristics, the therapeutic application of microsponges in topical disorders, cancer, as cosmetics, recent advances in MDS and addresses the associated challenges.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology &Sciences, Allahabad, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Saudi Arabia
| | - Sunil K Panda
- Menovo Pharmaceuticals Research Lab, Ningbo, People\'s Republic of China
| | - Aman Kumar Das
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology &Sciences, Allahabad, India
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Kirti Soni
- Formulation Development, Dabur Research Foundation, 22 Site IV Sahibabad Industrial Area, Ghaziabad, Uttar Pradesh, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Mayank Handa
- Department of Pharmaceutics, NIPER, Raebareli, Lucknow, Uttar Pradesh, 226002
| | - Sarwar Beg
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UKb
| | - Ziyaur Rahman
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station , TX 77843
| |
Collapse
|
13
|
Chellampillai B, Kashid S, Pawar A, Mali A. Investigation of dimyristoyl phosphatidyl glycerol and cholesterol based nanocochleates as a potential oral delivery carrier for methotrexate. J Liposome Res 2021; 32:308-316. [PMID: 34957892 DOI: 10.1080/08982104.2021.2018603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Methotrexate (MTX), a biopharmaceutical classification system-IV anticancer drug, exhibits low therapeutic efficacy. Moreover, its clinical applications were restricted due to its multidrug resistance (MDR) in cancer and its toxic effects. The present investigation was to fabricate 1, 2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium (DMPG-Na), (3β)-cholest-5-en-3-ol (cholesterol) and calcium-based nanocochleates (NCs) as a potential oral delivery carrier for MTX to enhance its therapeutic efficacy with low toxicity. MTX-loaded NCs (MTX-NCs) was developed by the addition of calcium ion into preformed nanoliposomes (MTX-NLs) comprising MTX, DMPG-Na, with cholesterol and evaluated by in-vitro and in-vivo methods in comparison with MTX-NLs and pure MTX. Stable tubular rod structure of MTX-NCs possessing particle size, encapsulation efficiency and zeta potential of 374.1 ± 2.2 nm, 78.63 ± 2.12% and -71.2 mV, respectively were obtained from homogenous unilamellar, discrete and spherical structured MTX-NLs with a diameter and zeta potential of 363.3 ± 3.7 nm and -74.6 mV respectively. A thermal study revealed an amorphous state of MTX in MTX-NCs. Pharmacokinetics study in rats, MTX-NLs and MTX-NCs were showed controlled release with 5 and 6 fold improvements in oral bioavailability. Moreover, MTX-NCs showed low tissue distribution. These results collectively suggest that the developed system could be used to improve the therapeutic efficacy of MTX.
Collapse
Affiliation(s)
- Bothiraja Chellampillai
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University (BVDU), Maharashtra, India
| | - Sneha Kashid
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University (BVDU), Maharashtra, India
| | - Atmaram Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University (BVDU), Maharashtra, India
| | - Ashwin Mali
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University (BVDU), Maharashtra, India
| |
Collapse
|
14
|
Shetty K, Sherje AP. Nano intervention in topical delivery of corticosteroid for psoriasis and atopic dermatitis-a systematic review. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:88. [PMID: 34331599 PMCID: PMC8325647 DOI: 10.1007/s10856-021-06558-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 07/07/2021] [Indexed: 05/03/2023]
Abstract
Atopic dermatitis (AD) and psoriasis are highly prevalent, complex, chronic inflammatory skin diseases that immensly affect the patient's quality of life. While there is no definitive cure for these conditions, suppressive medications aim at managing the symptoms of these diseases. The application of emollients accompanied by symptomatic anti-inflammatory therapy consisting of topical corticosteroids (TCS) is extensively employed for controlling the symptoms among general practitioners making this therapeutic class an indispensable pillar of dermatotherapeutics. The first TCS, hydrocortisone (HC) introduced in the early 1950s led to the development of different steroidal moieties of varying potencies by inducing chemical modifications to the basic steroid structure. The wide spectrum of the available range of formulations and potency provides flexibility to treat all patient groups, different phases of the diseases, and different anatomical sites. Conventional TCS therapy suffers from drawbacks such as low drug permeation and retention rate. Thus, novel nanoformulations have been developed to overcome these problems. This review provides an insight into the current state of nanocarrier-mediated topical delivery of corticosteroids monotherapy and combination therapy with special emphasis on targeting psoriasis and AD.
Collapse
Affiliation(s)
- Kshitya Shetty
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India
| | - Atul P Sherje
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India.
| |
Collapse
|
15
|
Yadav K, Singh D, Singh MR, Pradhan M. Multifaceted targeting of cationic liposomes via co-delivery of anti-IL-17 siRNA and corticosteroid for topical treatment of psoriasis. Med Hypotheses 2020; 145:110322. [DOI: 10.1016/j.mehy.2020.110322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/19/2020] [Accepted: 09/26/2020] [Indexed: 01/05/2023]
|
16
|
Khurana B, Arora D, Narang RK. QbD based exploration of resveratrol loaded polymeric micelles based carbomer gel for topical treatment of plaque psoriasis: In vitro, ex vivo and in vivo studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
He Y, Majid K, Maqbool M, Hussain T, Yousaf AM, Khan IU, Mehmood Y, Aleem A, Arshad MS, Younus A, Nirwan JS, Ghori MU, Rizvi SA, Shahzad Y. Formulation and characterization of lornoxicam-loaded cellulosic-microsponge gel for possible applications in arthritis. Saudi Pharm J 2020; 28:994-1003. [PMID: 32792844 PMCID: PMC7414098 DOI: 10.1016/j.jsps.2020.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease associated with severe joint pain. Herein, we report lornoxicam loaded cellulosic microsponge gel formulation with sustained anti-inflammatory effects that are required to manage arthritic pain. The microsponges were formulated using quasi emulsion-solvent diffusion method employing four different surfactant systems, namely polyvinyl alcohol (PVA), Tween80, Gelucire 48/16 and Gelucire 50/13. All the lornoxicam loaded microsponge formulations were extensively characterized with a variety of analytical tools. The optimized microsponge formulation was then converted into gel formulation. The lornoxicam loaded microsponge gel formulation had adequate viscosity and sufficient pharmaceutical properties as confirmed by the texture analysis and the drug release followed Super case II transport. It is noteworthy that we described the preparation of a new cellulosic polymers based microsponge system for delivery of lornoxicam to provide quick as well as lasting (sustained) anti-inflammatory effects in rats using carrageenan induced rat paw edema model. We were able to demonstrate a 72% reduction in inflammation within 4 h using the optimize transdermal gel formulation utilizing Transcutol P as permeation enhancer and with the aid of skin micro-piercing by microneedles, hence, demonstrating the potential of this microsponge gel formulation in arthritis management.
Collapse
Affiliation(s)
- Yeteng He
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province 250000, China
| | - Khadija Majid
- Facuty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Maimoona Maqbool
- Facuty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Talib Hussain
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Yasir Mehmood
- Ameer and Adnan Pharmaceuticals (Pvt.) Ltd, Sunder Industrial Estate, Lahore 54000, Pakistan
| | - Ambreen Aleem
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Muhammad Sohail Arshad
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Adnan Younus
- Global Medical Solutions Hospital Management LLC, Abu Dhabi, United Arab Emirates
| | - Jorabar Singh Nirwan
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Muhammad Usman Ghori
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Syed A.A. Rizvi
- Hampton School of Pharmacy, Hampton University, VA 23669, United States
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|