1
|
Safarov R, Fedotova O, Uvarova A, Gordienko M, Menshutina N. Review of Intranasal Active Pharmaceutical Ingredient Delivery Systems. Pharmaceuticals (Basel) 2024; 17:1180. [PMID: 39338342 PMCID: PMC11435088 DOI: 10.3390/ph17091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
In recent decades, there has been an increased interest in the development of intranasal delivery systems for active pharmaceutical ingredients (APIs) not only for treating local nasal diseases but also for treating systemic diseases, central nervous system (CNS) disorders, and vaccine delivery. The nasal cavity possesses a unique set of anatomical characteristics for delivering active pharmaceutical ingredients, but there are several limitations that recent research in the field of the intranasal administration of APIs aims to overcome. For the effective delivery of nasal preparations, active pharmaceutical ingredients are incorporated into various micro- and nanosystems. Some of the most commonly encountered API delivery systems in the scientific literature include liposomal systems, polymer particles with mucoadhesive properties, in situ gels, nano- and microemulsions, and solid lipid particles. This article provides a review of research on the development of nasal preparations for treating local nasal cavity diseases (in particular, for antibiotic delivery), systemic diseases (analgesics, drugs for cardiovascular diseases, antiviral and antiemetic drugs), CNS disorders (Alzheimer's disease, Parkinson's disease, epilepsy, schizophrenia, depression), and vaccine delivery. The literature data show that active research is underway to reformulate drugs of various pharmacotherapeutic groups into a nasal form.
Collapse
Affiliation(s)
| | - Olga Fedotova
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia (A.U.)
| | | | | | | |
Collapse
|
2
|
Fan Y, Wang S, Yang J, Wang R, Wang Y, Zhu X, Wang Z. Microemulsions based on Acer truncatum seed oil and its fatty acids: fabrication, rheological property, and stability. J Microencapsul 2024; 41:296-311. [PMID: 38709162 DOI: 10.1080/02652048.2024.2348450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
AIMS To construct the microemulsion delivery system (ME) loading ATSO and NA and study their physicochemical characteristics to enhance their stability and water solubility. METHODS By plotting ternary phase diagrams, the composition and proportions of the MEs were determined. The physicochemical characteristics and stability of MEs were evaluated by mean diameter, polydispersity index (PDI), pH, electrical conductivity, transmission electron microscopy (TEM), rheological behaviour measurement, and phase inversion temperature (PIT). RESULTS The MEs was composed with EL-40 as a surfactant and specifically with the addition of ethanol as a cosurfactant in NA-loaded ME. The mean diameters of ATSO-loaded ME and NA-loaded ME were 39.65 ± 0.24 nm and 32.90 ± 2.65 nm, and PDI were 0.49 ± 0.01 and 0.28 ± 0.14, respectively. The TEM confirmed the spherical and smooth morphology of MEs. The rheological results indicated that MEs are dilatant fluids with the advantages of low viscosity, high fluidity, and tolerance to temperature fluctuations. The mean diameter and PDI of MEs showed no significant change after storage at 25 °C for 28 days and centrifugation. CONCLUSION The prepared microemulsions could expand the application prospects of ATSO and NA products in cosmetics, medicine, foods and other fields.
Collapse
Affiliation(s)
- Yaqing Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shuting Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jiayi Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ruixue Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yulu Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xuanhe Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhanzhong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Virani A, Dholaria N, Matharoo N, Michniak-Kohn B. A Study of Microemulsion Systems for Transdermal Delivery of Risperidone Using Penetration Enhancers. J Pharm Sci 2023; 112:3109-3119. [PMID: 37429357 DOI: 10.1016/j.xphs.2023.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
The aim of this study was to develop and characterize microemulsion formulations using penetration enhancers as potential transdermal delivery systems for risperidone. Initially, a simple formulation of risperidone in Propylene Glycol (PG) was prepared as a control formulation, together with formulations incorporating various penetration enhancers, alone and/or in combination, and also microemulsion formulations with various chemical penetration enhancers, were prepared and all were evaluated for risperidone transdermal delivery. An ex-vivo permeation study was carried out using human cadaver skin and vertical glass Franz diffusion cells to compare all the microemulsion formulations. The microemulsion prepared from oleic acid as the oil (15%), Tween 80 (15%) as the surfactant and isopropyl alcohol (20%) as the co-surfactant, and water (50%) showed higher permeation with a flux value of 32.50±3.60 ug/hr/sq.cm, a globule size of 2.96±0.01 nm, a polydispersity index of 0.33±0.02 and pH of 4.95. This novel in vitro research disclosed that an optimized microemulsion formulated using penetration enhancers was able to increase permeation of risperidone by 14-fold compared to the control formulation. The data suggested that microemulsions may be useful in the delivery of risperidone via the transdermal route.
Collapse
Affiliation(s)
- Amitkumar Virani
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States
| | - Nirali Dholaria
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States
| | - Namrata Matharoo
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States
| | - Bozena Michniak-Kohn
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States.
| |
Collapse
|
4
|
Kareem YM, Hamad TI. Assessment of the antibacterial effect of Barium Titanate nanoparticles against Staphylococcus epidermidis adhesion after addition to maxillofacial silicone. F1000Res 2023; 12:385. [PMID: 37663198 PMCID: PMC10468664 DOI: 10.12688/f1000research.132727.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 09/05/2023] Open
Abstract
Background: Maxillofacial silicones are the most popular and acceptable material for making maxillofacial prostheses, but they are not perfect in every sense. To enhance their effectiveness, more improvements to their properties are required, such as their antimicrobial efficiency. This study assess the antibacterial effect of barium titanate nanoparticles in various percentages against staphylococcus epidermidis biofilm adhesion after addition to maxillofacial silicone. Methods: Barium titanate nanoparticles were added into VST-50 platinum silicone elastomer in four weight percentages (0.25wt%, 0.5wt%, 0.75wt% and 1wt%). 50 specimens were prepared and categorized into five groups; one control group and four experimental groups. All conducted data was statistically analyzed using (one-way ANOVA) analysis of variance, and Games-Howell multiple comparison test (significant level at p < 0.05). Shapiro-Wilk and Levene's tests were used, respectively, to evaluate the normal distribution and homogeneity of the data. Result: One-way ANOVA test revealed a highly significant difference between all groups, and Games-Howell test revealed a highly significant difference between the control group and the four experimental groups. The 0.25wt% and 0.5wt% groups revealed a highly significant difference between them and with the (0.75%wt and 0.1%wt) groups. While the 0.75wt% group revealed a significant difference with 1wt% group. Conclusions: The addition of barium titanate to VST-50 maxillofacial silicone enhanced the antibacterial activity of silicon against Staphylococcus epidermidis, and this activity seems to be concentration dependent. FTIR analysis demonstrated no chemical interaction between the Barium Titanate and the VST-50 maxillofacial silicone elastomer. SEM pictures show that the barium titanate nanopowder was effectively dispersed inside the maxillofacial silicone matrix.
Collapse
Affiliation(s)
- Yasir Mohammed Kareem
- B.D.S. Department of Prosthodontic, College of Dentistry, University of Baghdad, Baghdad, Baghdad Governorate, Iraq
| | - Thekra Ismael Hamad
- B.D.S., M.Sc., Ph.D., Prof. Department of Prosthodontic, College of Dentistry, University of Baghdad, Baghdad, Baghdad Governorate, Iraq
| |
Collapse
|
5
|
Development and Characterization of Azithromycin-Loaded Microemulsions: A Promising Tool for the Treatment of Bacterial Skin Infections. Antibiotics (Basel) 2022; 11:antibiotics11081040. [PMID: 36009909 PMCID: PMC9404999 DOI: 10.3390/antibiotics11081040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, the treatment of bacterial skin infections has been considered a major healthcare issue due to the growing emergence of antibiotic-resistant strains of Staphylococcus aureus. The incorporation of antibiotics in appropriate nanosystems could represent a promising strategy, able to overcome several drawbacks of the topical treatment of infections, including poor drug retention within the skin. The present work aims to develop microemulsions containing azithromycin (AZT), a broad-spectrum macrolide antibiotic. Firstly, AZT solubility in various oils, surfactants and co-surfactants was assessed to select the main components. Subsequently, microemulsions composed of vitamin E acetate, Labrasol® and Transcutol® P were prepared and characterized for their pH, viscosity, droplet size, zeta potential and ability to release the drug and to promote its retention inside porcine skin. Antimicrobial activity against S. aureus methicillin-resistant strains (MRSA) and the biocompatibility of microemulsions were evaluated. Microemulsions showed an acceptable pH and were characterized by different droplet sizes and viscosities depending on their composition. Interestingly, they provided a prolonged release of AZT and promoted its accumulation inside the skin. Finally, microemulsions retained AZT efficacy on MRSA and were not cytotoxic. Hence, the developed AZT-loaded microemulsions could be considered as useful nanocarriers for the treatment of antibiotic-resistant infections of the skin.
Collapse
|
6
|
Preparation of water-in-oil (W/O) cinnamaldehyde microemulsion loaded with epsilon-polylysine and its antibacterial properties. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Progress in nasal drug delivery systems. Int J Pharm 2021; 607:120994. [PMID: 34390810 DOI: 10.1016/j.ijpharm.2021.120994] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/02/2023]
Abstract
Most of the available drugs are usually administered orally (e.g. in tablets or capsules) or by parenteral injection in the case of substances being destroyed in the gastric environment or not being absorbed. However, this bears disadvantages as many people have trouble swallowing tablets and parenteral injection requires trained personnel and/or a reasonably sterile environment to minimize the possibility of contamination. Thus, as an easy to use alternative nasal drug delivery was developed. Drug delivery systems are used to achieve a reproducible high drug concentration. These systems overcome various disadvantages leading to stabilization of the drug, advanced drug transport, improvement of the physicochemical properties of the drug like water solubility, and increase of drug uptake and bioavailability. In addition, properties such as bad taste or smell of the drug are masked. Nasal drug delivery systems are suitable for use both locally and systemically. In the last five years, the development and progression of nasal drug delivery systems has gained importance due to their numerous advantages. This work gives an overview of the basics, such as structure and function of the nose, as well as a short introduction to local and systemic application of drugs. Furthermore, selected drug delivery systems are explained with examples of active ingredients, as well as additional possibilities to increase nasal drug uptake and factors influencing the absorption.
Collapse
|