1
|
Li L, Permana AD, Domínguez-Robles J, Amir MN, Habibie H, Anjani QK, Zhao L, Moreno-Castellanos N, Donnelly RF, Larrañeta E. Reservoir-Type Subcutaneous Implantable Devices Containing Porous Rate Controlling Membranes for Sustained Delivery of Risperidone. Adv Healthc Mater 2025:e2403689. [PMID: 39823155 DOI: 10.1002/adhm.202403689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/03/2024] [Indexed: 01/19/2025]
Abstract
Implantable drug delivery systems are crucial for achieving sustained delivery of active compounds to specific sites or systemic circulation. In this study, a novel reservoir-type implant combining a biodegradable rate-controlling membrane with a drug-containing core prepared using direct compression techniques is developed. The membrane is composed of poly(caprolactone) (PCL), and risperidone (RIS) served as the model drug. Characterization of both membranes and direct compressed pellets includes hardness testing, optical coherence tomography, mercury intrusion porosimetry, and surface morphology observation. In vitro release studies of RIS reveal that higher drug loading in the pellets extended-release duration up to 70 days when incorporated into membranes with four layers. Increasing the number of membrane layers slows the release rate further, ranging from 70 to 170 days depending on membrane thickness. Biocompatibility studies demonstrate that these implantable devices are non-toxic and biocompatible with cells in vitro. In vivo studies conduct in male Wistar rats demonstrate sustained release of RIS, with plasma levels showing a significant increase post-implantation at a relatively constant rate for up to 49 days. These results indicate that the developed implants have the potential to provide long-acting drug delivery to the systemic circulation.
Collapse
Affiliation(s)
- Linlin Li
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast, BT9 7BL, UK
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, 41012, Spain
| | - Muh Nur Amir
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Habibie Habibie
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast, BT9 7BL, UK
| | - Li Zhao
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast, BT9 7BL, UK
| | - Natalia Moreno-Castellanos
- CICTA, Department of Basic Sciences, Medicine School, Health Faculty, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga, 680002, Colombia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast, BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast, BT9 7BL, UK
| |
Collapse
|
2
|
Husseini RA, Ibrahim TM, Hamed E, Gomaa E, Faisal MM, Wan G, Amin M, Alkolaib AM, Abdelnabi DM. Fabrication and Optimization of a Silodosin In Situ-Forming PLGA Implants for the Treatment of Benign Prostatic Hyperplasia: In Vitro and In Vivo Study. Pharmaceutics 2024; 16:1364. [PMID: 39598487 PMCID: PMC11597075 DOI: 10.3390/pharmaceutics16111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives: Lower urinary tract symptoms (LUTSs) related to benign prostatic hyperplasia (BPH) are common in older men, and alpha-adrenoceptor blockers continue to be a key part of managing these symptoms. This study aimed to formulate injectable poly (lactic-co-glycolic acid) (PLGA) in situ-forming implants (ISFIs) loaded with silodosin (SLD) to address symptoms associated with BPH. This method, which ensures prolonged therapeutic effects of SLD, is intended to decrease dosing frequency and improve treatment outcomes, leading to better patient adherence. Methods: An appropriate solvent with favorable PLGA solubility, viscosity, and in vitro release profile was selected. Additionally, an I-optimal design was employed as an optimization technique. An in vivo study in albino male rats was conducted to investigate prostate-specific antigens (PSAs), prostate weight and prostatic index, histopathology, and SLD pharmacokinetics. Results: The optimized formulation showed experimental values of 29.25% for the initial burst after 2 h and 58.23% for the cumulative release of SLD after 10 days. Pharmacokinetic data revealed that the SLD-ISFI formulation had lower Cmax and higher AUC values than subcutaneous (SC) pure SLD and oral commercial SLD capsule, indicating the controlled-release impact and improved bioavailability of the ISFI systems. SLD-ISFI produced a marked drop in the prostatic index by 2.09-fold compared to the positive control. Serum PSA level decreased significantly from 0.345 ± 0.007 to 0.145 ± 0.015 ng/mL after SLD-ISFI injection compared to the positive control. Conclusions: This study indicated that the optimized SLD-ISFI formulation proved its efficacy in managing BPH.
Collapse
Affiliation(s)
- Rabab A. Husseini
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.A.H.); (T.M.I.); (E.G.); (M.M.F.)
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.A.H.); (T.M.I.); (E.G.); (M.M.F.)
| | - Eslam Hamed
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.A.H.); (T.M.I.); (E.G.); (M.M.F.)
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), Cairo 11837, Egypt
| | - Mennatullah M. Faisal
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.A.H.); (T.M.I.); (E.G.); (M.M.F.)
| | - Ghadeer Wan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (G.W.); (M.A.)
| | - Manna Amin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (G.W.); (M.A.)
| | - Ali M. Alkolaib
- Department of Pharmaceutics, Faculty of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Dina M. Abdelnabi
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.A.H.); (T.M.I.); (E.G.); (M.M.F.)
| |
Collapse
|
3
|
Abdallah MH, Shahien MM, El-Horany HES, Ahmed EH, El-Nahas HM, Abdulla NA, Ibrahim TM. Evaluation of Mucoadhesive Nano-Bilosomal In Situ Gels Containing Anti-Psychotic Clozapine for Treatment of Schizophrenia: In Vitro and In Vivo Studies. Pharmaceuticals (Basel) 2024; 17:1404. [PMID: 39459043 PMCID: PMC11510079 DOI: 10.3390/ph17101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Patients with schizophrenia have significant challenges in adhering to and complying with oral medicines, resulting in adverse consequences such as symptom worsening and psychotic relapse. Methods: This study aimed to develop clove oil-based bilosomes using definitive screening design (DSD) to maximize the anti-schizophrenic action of clozapine and promote its nose-to-brain delivery. The target was to optimize the physicochemical properties of bilosomes and incorporate them into mucoadhesive intranasal in situ gels, searching for augmented ex vivo and in vivo clozapine delivery. Results: The bilosomes' particle size was decreased by increasing the span, SDC, and clove oil amounts. In addition to using a high lipid amount, the aforementioned components also helped increase the entrapment efficiency values. Increased zeta potential was only observed by increasing surfactant amount and reducing clozapine concentration. After incorporation of optimized liquid clove oil-based bilosomes, which had a spherical nano-sized vesicular shape, into P 407-dependent gels, an HPMC (2% w/w)/P 407 (20% w/w)-containing formulation (G6) was selected as an optimized gel owing to its acceptable gelation time (13.28 s), gel strength (27.72 s), viscosity (12,766.67 cP), and mucoadhesive strength (4273.93 dyne/cm2). The optimized G6 exhibited higher Jss (50.86 μg/cm2·h-1) through the nasal mucosa compared to the control gel (23.03 μg/cm2·h-1). Compared to the control gel, G6 displayed higher relative bioavailability (491.37%) than a commercial tablet (264.46%). Following ELISA analysis, dopamine and serotonin were significantly reduced, while BDNF was remarkably increased after administration of optimized G6 into schizophrenic rats. Conclusion: Our study indicates the potential of intranasal bilosomal gels in upgrading the anti-schizophrenic and neuroprotective activity of clozapine.
Collapse
Affiliation(s)
- Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Mona M. Shahien
- Department of Pediatrics, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Hemat El-Sayed El-Horany
- Department of Biochemistry, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Enas Haridy Ahmed
- Department of Anatomy, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hanan M. El-Nahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-N.); (N.A.A.); (T.M.I.)
| | - Nourhan A. Abdulla
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-N.); (N.A.A.); (T.M.I.)
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-N.); (N.A.A.); (T.M.I.)
| |
Collapse
|
4
|
Ramos F, Willart JF, Neut C, Agossa K, Siepmann J, Siepmann F. In-situ forming PLGA implants: Towards less toxic solvents. Int J Pharm 2024; 657:124121. [PMID: 38621617 DOI: 10.1016/j.ijpharm.2024.124121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
In-situ forming poly(lactic-co-glycolic acid) (PLGA) implants offer a great potential for controlled drug delivery for a variety of applications, e.g. periodontitis treatment. The polymer is dissolved in a water-miscible solvent. The drug is dissolved or dispersed in this solution. Upon contact with aqueous body fluids, the solvent diffuses into the surrounding tissue and water penetrates into the formulation. Consequently, PLGA precipitates, trapping the drug. Often, N-methyl-2-pyrrolidine (NMP) is used as a water-miscible solvent. However, parenteral administration of NMP raises toxicity concerns. The aim of this study was to identify less toxic alternative solvent systems for in-situ forming PLGA implants. Various blends of polyethylene glycol 400 (PEG 400), triethyl citrate (TEC) and ethanol were used to prepare liquid formulations containing PLGA, ibuprofen (as an anti-inflammatory drug) and/or chlorhexidine dihydrochloride (as an antiseptic agent). Implant formation and drug release kinetics were monitored upon exposure to phosphate buffer pH 6.8 at 37 °C. Furthermore, the syringeability of the liquids, antimicrobial activity of the implants, and dynamic changes in the latter's wet mass and pH of the release medium were studied. Importantly, 85:10:5 and 60:30:10 PEG 400:TEC:ethanol blends provided good syringeability and allowed for rapid implant formation. The latter controlled ibuprofen and chlorhexidine release over several weeks and assured efficient antimicrobial activity. Interestingly, fundamental differences were observed concerning the underlying release mechanisms of the two drugs: Ibuprofen was dissolved in the solvent mixtures and partially leached out together with the solvents during implant formation, resulting in relatively pronounced burst effects. In contrast, chlorhexidine dihydrochloride was dispersed in the liquids in the form of tiny particles, which were effectively trapped by precipitating PLGA during implant formation, leading to initial lag-phases for drug release.
Collapse
Affiliation(s)
- F Ramos
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France; Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 UMET, F-59000 Lille, France
| | - J-F Willart
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 UMET, F-59000 Lille, France
| | - C Neut
- Univ. Lille, Inserm, CHU Lille, U1286, F-59000 Lille, France
| | - K Agossa
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| | - F Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| |
Collapse
|
5
|
Sabry SA, Abd El Razek AM, Nabil M, Khedr SM, El-Nahas HM, Eissa NG. Brain-targeted delivery of Valsartan using solid lipid nanoparticles labeled with Rhodamine B; a promising technique for mitigating the negative effects of stroke. Drug Deliv 2023; 30:2179127. [PMID: 36794404 PMCID: PMC10003139 DOI: 10.1080/10717544.2023.2179127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
The brain is a vital organ that is protected from the general circulation and is distinguished by the presence of a relatively impermeable blood brain barrier (BBB). Blood brain barrier prevents the entry of foreign molecules. The current research aims to transport valsartan (Val) across BBB utilizing solid lipid nanoparticles (SLNs) approach to mitigate the adverse effects of stroke. Using a 32-factorial design, we could investigate and optimize the effect of several variables in order to improve brain permeability of valsartan in a target-specific and sustained-release manner, which led to alleviation of ischemia-induced brain damage. The impact of each of the following independent variables was investigated: lipid concentration (% w/v), surfactant concentration (% w/v), and homogenization speed (RPM) on particle size, zeta potential (ZP), entrapment efficiency (EE) %, and cumulative drug release percentage (CDR) %. TEM images revealed a spherical form of the optimized nanoparticles, with particle size (215.76 ± 7.63 nm), PDI (0.311 ± 0.02), ZP (-15.26 ± 0.58 mV), EE (59.45 ± 0.88%), and CDR (87.59 ± 1.67%) for 72 hours. SLNs formulations showed sustained drug release, which could effectively reduce the dose frequency and improve patient compliance. DSC and X-ray emphasize that Val was encapsulated in the amorphous form. The in-vivo results revealed that the optimized formula successfully delivered Val to the brain through intranasal rout as compared to a pure Val solution and evidenced by the photon imaging and florescence intensity quantification. In a conclusion, the optimized SLN formula (F9) could be a promising therapy for delivering Val to brain, alleviating the negative consequences associated with stroke.
Collapse
Affiliation(s)
- Shereen A Sabry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Amal M Abd El Razek
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed Nabil
- Pharmacology Department, Faculty of Pharmacy, New Valley University, Kharga, Egypt
| | - Shaimaa M Khedr
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Hanan M El-Nahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Noura G Eissa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Science Academy, Badr University in Cairo, Badr City, Cairo, Egypt
| |
Collapse
|
6
|
Alyami MH, Musallam AA, Ibrahim TM, Mahdy MA, Elnahas HM, Aldeeb RA. The Exploitation of pH-Responsive Eudragit-Coated Mesoporous Silica Nanostructures in the Repurposing of Terbinafine Hydrochloride for Targeted Colon Cancer Inhibition: Design Optimization, In Vitro Characterization, and Cytotoxicity Assessment. Pharmaceutics 2023; 15:2677. [PMID: 38140018 PMCID: PMC10747614 DOI: 10.3390/pharmaceutics15122677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Targeted drug delivery is achieving great success in cancer therapy due to its potential to deliver drugs directly to the action site. Terbinafine hydrochloride (TER) is a broad-spectrum anti-fungal drug that has been found to have some potential anti-tumor effects in the treatment of colon cancer. We aimed here to design and develop pH-sensitive Eudragit (Eud)-coated mesoporous silica nanostructures (MSNs) to control drug release in response to changes in pH. The diffusion-supported loading (DiSupLo) technique was applied for loading TER into the MSNs. The formulation was optimized by a D-optimal design, which permits the concurrent assessment of the influence of drug/MSN%, coat concentration, and MSN type on the drug entrapment efficiency (EE) and its release performance. The optimal formula displayed a high EE of 96.49%, minimizing the release in pH 1.2 to 16.15% and maximizing the release in pH 7.4 to 78.09%. The cytotoxicity of the optimal formula on the colon cancer cells HT-29 was higher than it was with TER alone by 2.8-fold. Apoptosis in cancer cells exposed to the optimum formula was boosted as compared to what it was with the plain TER by 1.2-fold and it was more efficient in arresting cells during the G0/G1 and S stages of the cell cycle. Accordingly, the repurposing of TER utilizing Eud/MSNs is a promising technique for targeted colon cancer therapy.
Collapse
Affiliation(s)
- Mohammad H. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia
| | - Abeer A. Musallam
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12582, Egypt
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud A. Mahdy
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hanan M. Elnahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Reem A. Aldeeb
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12582, Egypt
| |
Collapse
|
7
|
Abdallah MH, El-Horany HES, El-Nahas HM, Ibrahim TM. Tailoring Risperidone-Loaded Glycethosomal In Situ Gels Using Box-Behnken Design for Treatment of Schizophrenia-Induced Rats via Intranasal Route. Pharmaceutics 2023; 15:2521. [PMID: 38004501 PMCID: PMC10675145 DOI: 10.3390/pharmaceutics15112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Schizophrenic patients often face challenges with adherence to oral regimens. The study aimed to highlight the potentiality of intranasal ethanol/glycerin-containing lipid-nanovesicles (glycethosomes) incorporated into in situ gels for sustaining anti-psychotic risperidone (RS) release. The Box-Behnken Design (BBD) was followed for in vitro characterization. Glycethosomal-based in situ gels were examined by physical, ex vivo, and in vivo investigations. The ethanol impact on minimizing the vesicle size (VS) and enhancing the zeta potential (ZP) and entrapment efficiency (EE%) of nanovesicles was observed. Glycerin displayed positive action on increasing VS and ZP of nanovesicles, but reduced their EE%. After incorporation into various mucoadhesive agent-enriched poloxamer 407 (P407) in situ gels, the optimized gel containing 20% P407 and 1% hydroxypropyl methyl cellulose-K4M (HPMC-K4M) at a 4:1 gel/glycethosomes ratio showed low viscosity and high spreadability with acceptable pH, gel strength, and mucoadhesive strength ranges. The ethanol/glycerin mixture demonstrated a desirable ex vivo skin permeability of RS through the nasal mucosa. By pharmacokinetic analysis, the optimized gel showed eight-fold and three-fold greater increases in RS bioavailability than the control gel and marketed tablet, respectively. Following biochemical assessments of schizophrenia-induced rats, the optimized gel boosted the neuroprotective, anti-oxidant, and anti-inflammatory action of RS in comparison to other tested preparations. Collectively, the intranasal RS-loaded glycethosomal gel offered a potential substitute to oral therapy for schizophrenic patients.
Collapse
Affiliation(s)
- Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-N.); (T.M.I.)
| | - Hemat El-Sayed El-Horany
- Department of Biochemistry, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Hanan M. El-Nahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-N.); (T.M.I.)
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-N.); (T.M.I.)
| |
Collapse
|
8
|
Senarat S, Rojviriya C, Puyathorn N, Lertsuphotvanit N, Phaechamud T. Levofloxacin HCl-Incorporated Zein-Based Solvent Removal Phase Inversion In Situ Forming Gel for Periodontitis Treatment. Pharmaceutics 2023; 15:pharmaceutics15041199. [PMID: 37111684 PMCID: PMC10143341 DOI: 10.3390/pharmaceutics15041199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Zein is composed of nonpolar amino acids and is a water-insoluble protein used as the matrix-forming agent of localized in situ forming gel (ISG). Therefore, this study prepared solvent removal phase inversion zein-based ISG formulations to load levofloxacin HCl (Lv) for periodontitis treatment using dimethyl sulfoxide (DMSO) and glycerol formal (GF) as the solvents. Their physicochemical properties were determined, including viscosity, injectability, gel formation, and drug release. The topography of dried remnants after drug release was revealed using a scanning electron microscope and X-ray computed microtomography (μCT) to investigate their 3D structure and % porosity. The antimicrobial activities were tested against Staphylococcus aureus (ATCC 6538), Escherichia coli ATCC 8739, Candida albicans ATCC 10231, and Porphyromonas gingivalis ATCC 33277 with agar cup diffusion. Increasing zein concentration or using GF as the solvent notably enhanced the apparent viscosity and injection force of the zein ISG. However, its gel formation slowed due to the dense zein matrix barrier's solvent exchange: the higher loaded zein or utilization of GF as an ISG solvent prolonged Lv release. The SEM and μCT images revealed the scaffold of dried ISG in that their % porosity corresponded with their phase transformation and drug release behavior. In addition, the sustainability of drug diffusion promoted a smaller antimicrobial inhibition clear zone. Drug release from all formulations was attained with minimum inhibitory concentrations against pathogen microbes and exhibited a controlled release over 7 days. Lv-loaded 20% zein ISG using GF as a solvent exhibited appropriate viscosity, Newtonian flow, acceptable gel formation and injectability, and prolonged Lv release over 7 days with efficient antimicrobial activities against various test microbes; thus, it is the potential ISG formulation for periodontitis treatment. Consequently, the Lv-loaded solvent removal zein-based ISGs proposed in this investigation offer promising potential as an efficacious drug delivery system for periodontitis treatment by local injection.
Collapse
Affiliation(s)
- Setthapong Senarat
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Catleya Rojviriya
- Synchrotron Light Research Institute, Mueang District, Nakhon Ratchasima 30000, Thailand
| | - Napaphol Puyathorn
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nutdanai Lertsuphotvanit
- Program of Pharmaceutical Technology, Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thawatchai Phaechamud
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Program of Pharmaceutical Technology, Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
9
|
Aldeeb RAE, Mahdy MAEG, El-Nahas HM, Musallam AA. Design of mirtazapine solid dispersion with different carriers' systems: optimization, in vitro evaluation, and bioavailability assessment. Drug Deliv Transl Res 2023:10.1007/s13346-023-01316-9. [PMID: 36940079 PMCID: PMC10382405 DOI: 10.1007/s13346-023-01316-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/21/2023]
Abstract
The solid dispersion technique is the most effective and widely used approach for increasing the solubility and release of drugs that have low water solubility. Mirtazapine (MRT) is an atypical antidepressant used to treat severe depression. MRT has a low oral bioavailability (about 50%) due to its low water solubility (BCS class II). The study's goal was to determine optimum conditions for incorporating MRT into various polymer types utilizing the solid dispersion (SD) technique, with the goal of selecting the most suitable formula with the optimal aqueous solubility, loading efficiency, and dissolution rate. The D-optimal design was used to pick the optimal response. The optimum formula was subjected to physicochemical evaluation by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM). In vivo bioavailability study was conducted on white rabbits' plasma samples. MRT-SDs were prepared by the solvent evaporation method using Eudragit (RL-100, RS-100, E-100, L-100-55), PVP K-30, and PEG 4000 with different drug/polymer percentages (33.33%, 49.99%, and 66.66%). Results showed that the optimum formula obtained using PVP K-30 at a drug percentage of 33.33% gave a loading efficiency of 100.93%, an aqueous solubility of 0.145 mg/ml, and a dissolution rate of 98.12% after 30 min. These findings demonstrated promising enhancement of MRT properties and increasing its oral bioavailability by 1.34-fold more than plain drug.
Collapse
Affiliation(s)
- Reem Abd Elhameed Aldeeb
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza, 12582, Egypt.
| | | | | | - Abeer Abdelaziz Musallam
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza, 12582, Egypt
| |
Collapse
|
10
|
Investigation of Alogliptin-Loaded In Situ Gel Implants by 23 Factorial Design with Glycemic Assessment in Rats. Pharmaceutics 2022; 14:pharmaceutics14091867. [PMID: 36145615 PMCID: PMC9501034 DOI: 10.3390/pharmaceutics14091867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022] Open
Abstract
The aim of the study was to design injectable long-acting poly (lactide-co-glycolide) (PLGA)-based in situ gel implants (ISGI) loaded with the anti-diabetic alogliptin. Providing sustained therapeutic exposures and improving the pharmacological responses of alogliptin were targeted for achieving reduced dosing frequency and enhanced treatment outputs. In the preliminary study, physicochemical characteristics of different solvents utilized in ISGI preparation were studied to select a proper solvent possessing satisfactory solubilization capacity, viscosity, water miscibility, and affinity to PLGA. Further, an optimization technique using a 23 factorial design was followed. The blood glucose levels of diabetic rats after a single injection with the optimized formulation were compared with those who received daily oral alogliptin. N-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO), as highly water-miscible and low viscous solvents, demonstrated their effectiveness in successful ISGI preparation and controlling the burst alogliptin release. The impact of increasing lactide concentration and PLGA amount on reducing the burst and cumulative alogliptin release was represented. The optimized formulation comprising 312.5 mg of PLGA (65:35) and DMSO manifested a remarkable decrease in the rats’ blood glucose levels throughout the study period in comparison to that of oral alogliptin solution. Meanwhile, long-acting alogliptin-loaded ISGI systems demonstrated their feasibility for treating type 2 diabetes with frequent dosage reduction and patient compliance enhancement.
Collapse
|
11
|
Khaing EM, Intaraphairot T, Mahadlek J, Okonogi S, Pichayakorn W, Phaechamud T. Imatinib Mesylate-Loaded Rosin/Cinnamon Oil-Based In Situ Forming Gel against Colorectal Cancer Cells. Gels 2022; 8:gels8090526. [PMID: 36135239 PMCID: PMC9498735 DOI: 10.3390/gels8090526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Localized delivery systems have been typically designed to enhance drug concentration at a target site and minimize systemic drug toxicity. A rosin/cinnamon oil (CO) in situ forming gel (ISG) was developed for the sustainable delivery of imatinib mesylate (IM) against colorectal cancer cells. CO has been claimed to express a potent anticancer effect against various cancer cells, as well as a synergistic effect with IM on colorectal cancer cells; however, poor aqueous solubility limits its application. The effect of rosin with the adding CO was assessed on physicochemical properties and in vitro drug release from developed IM-loaded rosin/CO-based ISG. Moreover, in vitro cytotoxicity tests were conducted against two colorectal cancer cells. All formulations exhibited Newtonian flow behavior with viscosity less than 266.9 cP with easier injectability. The adding of CO decreased the hardness and increased the adhesive force of the obtained rosin gel. The gel formation increased over time under microscopic observation. CO-added ISG had a particle-like gel appearance, and it promoted a higher release of IM over a period of 28 days. All tested ISG formulations revealed cytotoxicity against HCT-116 and HT-29 cell lines at different incubation times. Thus, CO-loaded rosin-based ISG can act as a potentially sustainable IM delivery system for chemotherapy against colorectal cancer cells.
Collapse
Affiliation(s)
- Ei Mon Khaing
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Torsak Intaraphairot
- Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Jongjan Mahadlek
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Intellectual Center “Prachote Plengwittaya”, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Siriporn Okonogi
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wiwat Pichayakorn
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thawatchai Phaechamud
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Correspondence: ; Tel.: +66-034-255800
| |
Collapse
|
12
|
Musallam AA, Mahdy MA, Elnahas HM, Aldeeb RA. Optimization of mirtazapine loaded into mesoporous silica nanostructures via Box-Behnken design: in-vitro characterization and in-vivo assessment. Drug Deliv 2022; 29:1582-1594. [PMID: 35612286 PMCID: PMC9135429 DOI: 10.1080/10717544.2022.2075985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Employment of mesoporous silica nanostructures (MSNs) in the drug delivery field has shown a significant potential for improving the oral delivery of active pharmaceutical products with low solubility in water. Mirtazapine (MRT) is a tetracyclic antidepressant with poor water solubility (BCS Class II), which was recently approved as a potent drug used to treat severe depression. The principle of this research is to optimize the incorporation of Mirtazapine into MSNs to improve its aqueous solubility, loading efficiency, release performance, and subsequent bioavailability. The formulation was optimized by using of Box-Behnken Design, which allows simultaneous estimation of the impact of different types of silica (SBA-15, MCM-41, and Aluminate-MCM-41), a different drug to silica ratios (33.33%, 49.99%, and 66.66%), and different drug loading procedures (Incipient wetness, solvent evaporation, and solvent impregnation) on the MRT loading efficiency, aqueous solubility and dissolution rate. The optimized formula was achieved by loading MRT into SBA-15 at 33.33% drug ratio prepared by the incipient wetness method, which displayed a loading efficiency of 104.05%, water solubility of 0.2 mg/ml, and 100% dissolution rate after 30 min. The pharmacokinetic profile of the optimized formula was obtained by conducting the in-vivo study in rabbits which showed a marked improvement (2.14-fold) in oral bioavailability greater than plain MRT. The physicochemical parameters and morphology of the optimized formula were characterized by; gas adsorption manometry, scanning electron microscopy (SEM), polarized light microscopy (PLM), Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and X-ray powder diffraction (XRPD).
Collapse
Affiliation(s)
- Abeer A Musallam
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - M A Mahdy
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hanan M Elnahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Reem A Aldeeb
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
13
|
In Vitro Evaluation of Poly(lactide-co-glycolide) In Situ Forming Gels for Bedaquiline Fumarate Salt and Pharmacokinetics Following Subcutaneous Injection in Rats. Pharmaceutics 2021; 13:pharmaceutics13081231. [PMID: 34452192 PMCID: PMC8400137 DOI: 10.3390/pharmaceutics13081231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
This study evaluated in vitro and in vivo drug release of bedaquiline from in situ forming gels (ISGs) containing 200 mg eq./g bedaquiline fumarate salt prepared with four different grades of poly(d,l-lactide) (PDLLA) or poly(d,l-lactide-co-glycolide) (PLGA) with a lactide/glycolide ratio of 50/50 or 75/25 and acid (A) or ester (E) end-capping in N-methyl-2-pyrrolidone at a polymer/solvent ratio of 20/80% (w/w). Mean in vitro drug release in 0.05 M phosphate buffer pH 7.4 with 1% (w/v) sodium lauryl sulphate was 37.3, 47.1, 53.3, and 62.3% within 28 days for ISGs containing PLGA5050A, PDLLA, PLGA7525A, and PLGA7525E, respectively. The data suggested that drug release was primarily controlled by precipitated drug redissolving, rather than polymer erosion. In vivo pharmacokinetic profiles after subcutaneous injections in rats were comparable for all ISGs (mean half-lives (t1/2) ranged from 1411 to 1695 h) and indicated a sustained drug release when compared to a solution of bedaquiline fumarate salt in polyethylene glycol 400/water 50/50% (v/v) (mean t1/2 of 895 h). In conclusion, PLGA or PDLLA-based ISGs have shown potential for parenteral sustained delivery of bedaquiline, suggesting further preclinical and clinical studies. From a formulation point of view, this case example highlights the importance of the interplay between drug solubility in biological media and dissolution of drug precipitates, which, in addition to the incorporation of diffusion controlling polymers, governs the release of the active drug.
Collapse
|
14
|
Ibrahim TM, El-Megrab NA, El-Nahas HM. An overview of PLGA in-situ forming implants based on solvent exchange technique: effect of formulation components and characterization. Pharm Dev Technol 2021; 26:709-728. [PMID: 34176433 DOI: 10.1080/10837450.2021.1944207] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As a result of the low oral bioavailability of several drugs, there is a renewed interest for parenteral administration to target their absorption directly into the blood bypassing the long gastrointestinal route and hepatic metabolism. In order to address the potential side effects of frequent injections, sustained release systems are the most popular approaches for achieving controlled long-acting drug delivery. Injectable in-situ forming implants (ISFIs) have gained greater popularity in comparison to other sustained systems. Their significant positive aspects are attributed to easier production, acceptable administration route, reduced dosing frequency and patient compliance achievement. ISFI systems, comprising biodegradable polymers such as poly (lactide-co-glycolide) (PLGA) based on solvent exchange mechanisms, are emerged as liquid formulations that develop solid or semisolid depots after injection and deliver drugs over extended periods. The drug release from ISFI systems is generally characterized by an initial burst during the matrix solidification, followed by diffusion processes and finally polymeric degradation and erosion. The choice of suitable solvent with satisfactory viscosity, miscibility and biocompatibility along with considerable PLGA hydrophobicity and molecular weights is fundamental for optimizing the drug release. This overview gives a particular emphasis on evaluations and the wide ranges of requirements needed to achieve reasonable physicochemical characteristics of ISFIs.
Collapse
Affiliation(s)
| | - Nagia Ahmed El-Megrab
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|