1
|
Aldeeb MME, Wilar G, Suhandi C, Elamin KM, Wathoni N. Nanosuspension-Based Drug Delivery Systems for Topical Applications. Int J Nanomedicine 2024; 19:825-844. [PMID: 38293608 PMCID: PMC10824615 DOI: 10.2147/ijn.s447429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Nanosuspensions have garnered recent attention as a promising strategy for mitigating the bioavailability challenges of hydrophobic drugs, particularly those characterized by poor solubility in both aqueous and organic environments. Addressing solubility issues associated with poorly water-soluble drugs has largely resolved the need to enhance drug absorption and bioavailability. As mucosal formulations and topical administration progress in the future, nanosuspension drug delivery, straightforward formulation techniques, and versatile applications will continue to be subjects of interest. Nanosuspensions have undergone extensive scrutiny in preparation for topical applications, encompassing ocular, pulmonary, and dermal usage. Among the numerous methods aimed at improving cutaneous application, nanocrystals represent a relatively recent yet profoundly intriguing approach. Despite the increasing availability of various nanosuspension products, primarily designed for oral administration, only a limited number of studies have explored skin permeability and drug accumulation in the context of nanosuspensions. Nevertheless, the scant published research unequivocally underscores the potential of this approach for enhancing cutaneous bioavailability, particularly for active ingredients with low to medium solubility. Nanocrystals exhibit increased skin adhesiveness in addition to heightened saturation solubility and dissolution rate, thereby augmenting cutaneous distribution. The article provides a comprehensive overview of nanosuspensions for topical application. The methodology employed is robust, with a well-defined experimental design; however, the limited sample size raises concerns about the generalizability of the findings. While the results demonstrate promising outcomes in terms of enhanced drug delivery, the discussion falls short of addressing certain limitations. Additionally, the references largely focus on recent studies, but a more diverse inclusion of historical perspectives could offer a more holistic view of the subject.
Collapse
Affiliation(s)
- Mohamed Mahmud E Aldeeb
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Department of Pharmaceutics, Faculty of Pharmacy, Elmergib University, Alkhoms, 40414, Libya
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Khaled M Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| |
Collapse
|
2
|
Zuccari G, Alfei S. Development of Phytochemical Delivery Systems by Nano-Suspension and Nano-Emulsion Techniques. Int J Mol Sci 2023; 24:9824. [PMID: 37372971 DOI: 10.3390/ijms24129824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The awareness of the existence of plant bioactive compounds, namely, phytochemicals (PHYs), with health properties is progressively expanding. Therefore, their massive introduction in the normal diet and in food supplements and their use as natural therapeutics to treat several diseases are increasingly emphasized by several sectors. In particular, most PHYs possessing antifungal, antiviral, anti-inflammatory, antibacterial, antiulcer, anti-cholesterol, hypoglycemic, immunomodulatory, and antioxidant properties have been isolated from plants. Additionally, their secondary modification with new functionalities to further improve their intrinsic beneficial effects has been extensively investigated. Unfortunately, although the idea of exploiting PHYs as therapeutics is amazing, its realization is far from simple, and the possibility of employing them as efficient clinically administrable drugs is almost utopic. Most PHYs are insoluble in water, and, especially when introduced orally, they hardly manage to pass through physiological barriers and scarcely reach the site of action in therapeutic concentrations. Their degradation by enzymatic and microbial digestion, as well as their rapid metabolism and excretion, strongly limits their in vivo activity. To overcome these drawbacks, several nanotechnological approaches have been used, and many nanosized PHY-loaded delivery systems have been developed. This paper, by reporting various case studies, reviews the foremost nanosuspension- and nanoemulsion-based techniques developed for formulating the most relevant PHYs into more bioavailable nanoparticles (NPs) that are suitable or promising for clinical application, mainly by oral administration. In addition, the acute and chronic toxic effects due to exposure to NPs reported so far, the possible nanotoxicity that could result from their massive employment, and ongoing actions to improve knowledge in this field are discussed. The state of the art concerning the actual clinical application of both PHYs and the nanotechnologically engineered PHYs is also reviewed.
Collapse
Affiliation(s)
- Guendalina Zuccari
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| | - Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| |
Collapse
|
3
|
Caicedo Chacon WD, Verruck S, Monteiro AR, Valencia GA. The mechanism, biopolymers and active compounds for the production of nanoparticles by anti-solvent precipitation: A review. Food Res Int 2023; 168:112728. [PMID: 37120194 DOI: 10.1016/j.foodres.2023.112728] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
The anti-solvent precipitation method has been investigated to produce biopolymeric nanoparticles in recent years. Biopolymeric nanoparticles have better water solubility and stability when compared with unmodified biopolymers. This review article focuses on the analysis of the state of the art available in the last ten years about the production mechanism and biopolymer type, as well as the used of these nanomaterials to encapsulate biological compounds, and the potential applications of biopolymeric nanoparticles in food sector. The revised literature revealed the importance to understand the anti-solvent precipitation mechanism since biopolymer and solvent types, as well as anti-solvent and surfactants used, can alter the biopolymeric nanoparticles properties. In general, these nanoparticles have been produced using polysaccharides and proteins as biopolymers, especially starch, chitosan and zein. Finally, it was identified that those biopolymers produced by anti-solvent precipitation were used to stabilize essential oils, plant extracts, pigments, and nutraceutical compounds, promoting their application in functional foods.
Collapse
|
4
|
Mahboob A, Samuel SM, Mohamed A, Wani MY, Ghorbel S, Miled N, Büsselberg D, Chaari A. Role of flavonoids in controlling obesity: molecular targets and mechanisms. Front Nutr 2023; 10:1177897. [PMID: 37252233 PMCID: PMC10213274 DOI: 10.3389/fnut.2023.1177897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity presents a major health challenge that increases the risk of several non-communicable illnesses, such as but not limited to diabetes, hypertension, cardiovascular diseases, musculoskeletal and neurological disorders, sleep disorders, and cancers. Accounting for nearly 8% of global deaths (4.7 million) in 2017, obesity leads to diminishing quality of life and a higher premature mortality rate among affected individuals. Although essentially dubbed as a modifiable and preventable health concern, prevention, and treatment strategies against obesity, such as calorie intake restriction and increasing calorie burning, have gained little long-term success. In this manuscript, we detail the pathophysiology of obesity as a multifactorial, oxidative stress-dependent inflammatory disease. Current anti-obesity treatment strategies, and the effect of flavonoid-based therapeutic interventions on digestion and absorption, macronutrient metabolism, inflammation and oxidative stress and gut microbiota has been evaluated. The use of several naturally occurring flavonoids to prevent and treat obesity with a long-term efficacy, is also described.
Collapse
Affiliation(s)
- Anns Mahboob
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Arif Mohamed
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Sofiane Ghorbel
- Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Nabil Miled
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali Chaari
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
5
|
A G Pinho L, Luiza Lima A, Sa-Barreto LL, Gelfuso GM, Gratieri T, Neves Marreto R, Chen Y, Cunha-Filho M. Medicated Lacquer For Application On Adornments To Treat Affections In Aesthetic Perforations. Int J Pharm 2022; 627:122240. [PMID: 36179928 DOI: 10.1016/j.ijpharm.2022.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022]
Abstract
Aesthetic perforations are often associated with health issues, such as itching, inflammation, or microbial infection. Accordingly, this work proposed a lacquer to be applied on the adornment accessory forming a film from which a proper drug is released. For this, lacquers were formulated containing three different permeation enhancers (limonene - LIM, propylene glycol - PG, and oleic acid - AO) combined according to a mixture design with a model anti-inflammatory natural drug (naringenin) and a soluble film-former polymer (polyvinyl alcohol). Formulations were characterized by physicochemical tests and in vitro and in vivo skin permeation studies. The lacquers were stable and provided a vectorized drug release. LIM, combined with one of the other permeation enhancers, showed a synergic effect, enhancing topical skin penetration in vitro by 53% while preventing permeation to the receptor medium. The in vivo evaluation of lacquers in rodent models showed these systems could provide higher levels of drug retention in the ear (166.4 ± 14.9 µg per ear for F4 and 174.9 ± 29.3 µg per ear for F5) compared to the control (109.2 ± 16.3 µg) without allowing its permeation into the bloodstream, confirming the local drug delivery. Moreover, the anti-inflammatory activity was achieved in the animal model developed for lacquer application on the earring, obtaining inhibition of ear swelling up to 40.8% ± 2.3 compared to the untreated ear. Thus, such an innovative lacquer proved a promising vehicle for treating affections caused by adornments, enhancing skin permeation while avoiding a systemic effect.
Collapse
Affiliation(s)
- Ludmila A G Pinho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Ana Luiza Lima
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Livia L Sa-Barreto
- Faculty of Ceilândia, University of Brasília, 72220-900, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Ricardo Neves Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goiás, 74605-170, Goiânia, GO, Brazil
| | - Yong Chen
- Laboratory for Drug Delivery & Translational Medicine, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, 70910-900, Brasília, DF, Brazil.
| |
Collapse
|
6
|
Paul RK, Kesharwani P, Raza K. Recent update on nano-phytopharmaceuticals in the management of diabetes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2046-2068. [PMID: 34228585 DOI: 10.1080/09205063.2021.1952381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Due to changed lifestyle and other reasons, diabetes has become one of the common metabolic disorder of the globe. Numerous therapeutic options are available, which controls the plasma glucose levels. However, most of the drugs are associated with some undesired side effects. Owing to the side effects and enhanced understanding of the phytochemicals, an inclination toward herbal medicine is seen in the population. These herbal products are also associated with concerns like poor aqueous solubility, compromised permeation, and a low degree of bioavailability. So, the emergence of nanotechnology in the herbal medicine is required to nullify the associated concerns of conventional antidiabetic drugs. The present review aims to compile the literature available for the nano-interventions pertinent to herbal products for diabetes management.
Collapse
Affiliation(s)
- Rakesh Kumar Paul
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| |
Collapse
|