1
|
Yang M, Yan H, Zhou J, Zhang J, Pan Y, Zhong H, Cai H, Xu Y, Wang J, Feng F, Zhao M. Physicochemical characterization, release profile, and antibacterial mechanisms of caffeic acid phenethyl ester loaded in lipid nanocapsules with lauric acid and glycerol monolaurate. Food Res Int 2025; 209:116208. [PMID: 40253176 DOI: 10.1016/j.foodres.2025.116208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Numerous studies have demonstrated the biological activities of caffeic acid phenethyl ester (CAPE), including antibacterial, antioxidant, and anti-inflammatory properties. However, the application of CAPE is limited by its low bioavailability and stability. In this work, we designed a CAPE loaded nanocapsule system by using polyoxyl-15-hydroxystearate, coconut oil and lecithin (LE)/lauric acid (LA)/glycerol monolaurate (GML) to improve the release rate of CAPE. The Blank-GML-lipid nanocapsules (BK-GML) and CAPE loaded BK-GML (CAPE-GML) were mainly assembled by hydrophobic forces and electrostatic forces, exhibited a typical spherical shape with a diameter size of less than 90 nm. The encapsulation and loading efficiencies of BK-GML and CAPE-GML reached 74.27 % and 9.61 %, respectively. Lipid nanocapsules (LNCs) also demonstrated a good sustained release of CAPE during in vitro stimulated digestion, indicating LNCs enable sustained CAPE release to the colon. Additionally, they showed a strong antibacterial activity against Escherichia coli and Staphylococcus aureus through the damage of the bacterial cytoderm. Also, BK-GML and CAPE-GML could inhibit the contamination and spread of pathogenic bacteria to be further applied in foods and pharmaceuticals industries.
Collapse
Affiliation(s)
- Mengyu Yang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Heng Yan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Jie Zhou
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Ya Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Haiying Cai
- School of Biological & Chemical Engineering, Zhejiang Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China; Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan, 512000, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Niu Y, Yu Y, Shi X, Fu F, Yang H, Mu Q, Crespy D, Landfester K, Jiang S. In Situ Measurement of Nanoparticle-Blood Protein Adsorption and Its Heterogeneity with Single-Nanoparticle Resolution via Dual Fluorescence Quantification. NANO LETTERS 2024; 24:9202-9211. [PMID: 39037031 PMCID: PMC11299225 DOI: 10.1021/acs.nanolett.4c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
The formation of a protein corona gives nanomedicines a distinct biological identity, profoundly influencing their fate in the body. Nonspecific nanoparticle-protein interactions are typically highly heterogeneous, which can lead to unique biological behaviors and in vivo fates for individual nanoparticles that remain underexplored. To address this, we have established an in situ approach that allows quantitative examination of nanoparticle-protein adsorption at the individual nanoparticle level. This method integrates dual fluorescence quantification techniques, wherein the nanoparticles are first individually analyzed via nanoflow cytometry to detect fluorescent signals from adsorbed proteins. The obtained fluorescence intensity is then translated into protein quantities through calibration with microplate reader quantification. Consequently, this approach enables analysis of interparticle heterogeneity of nano-protein interactions, as well as in situ monitoring of protein adsorption kinetics and nanoparticle aggregation status in blood serum, preconditioning for a comprehensive understanding of nano-bio interactions, and predicting in vivo fate of nanomedicines.
Collapse
Affiliation(s)
- Yuanyuan Niu
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| | - Yingjie Yu
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| | - Xinyang Shi
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| | - Fangqin Fu
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| | - Hai Yang
- Department
of Pharmacy, Qingdao Central Hospital, University
of Health and Rehabilitation Sciences, Qingdao 266042, China
| | - Qiang Mu
- The
First Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao
Central Medical Group), Qingdao 266042, China
| | - Daniel Crespy
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Katharina Landfester
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shuai Jiang
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Zhong Z, Chen Z, Xie Y, Wang W, Huang Z, Huang Y, Wu C, Pan X. The Effect of Sulfobetaine Coating in Inhibiting the Interaction between Lyotropic Liquid Crystalline Nanogels and Proteins. Gels 2022; 8:653. [PMID: 36286154 PMCID: PMC9602168 DOI: 10.3390/gels8100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022] Open
Abstract
The injective lyotropic liquid crystalline nanogels (LLCNs) were widely used in drug delivery systems. But when administered in vivo, LLCNs exposed to the biological environment interact with proteins. Recently, it has been shown that nanoparticles coated with zwitterions can inhibit their interaction with proteins. Thus, in this study, the interaction between proteins and LLCNs coated with the zwitterionic material sulfobetaine (GLLCNs@HDSB) was investigated using bovine serum albumin (BSA) as a model protein. Interestingly, it was found that GLLCNs@HDSB at higher concentrations (≥0.8 mg/mL) could block its interaction with BSA, but not at lower concentrations (<0.8 mg/mL), according to the results of ultraviolet, fluorescence, and circular dichroism spectra. In the ultraviolet spectra, the absorbance of GLLCNs@HDSB (0.8 mg/mL) was 1.9 times higher than that without the sulfobetaine coating (GLLCNs) after incubation with protein; the fluorescence quenching intensity of GLLCNs@HDSB was conversely larger than that of the GLLCNs; in circular dichroism spectra, the ellipticity value of GLLCNs@HDSB was significantly smaller than that of the GLLCNs, and the change in GLLCNs@HDSB was 10 times higher than that of the GLLCNs. Generally, nanoparticles coated with sulfobetaine can inhibit their interaction with proteins, but in this study, LLCNs showed a concentration-dependent inhibitory effect. It could be inferred that in contrast to the surface of nanoparticles covered with sulfobetaine in other cases, the sulfobetaine in this study interacted with the LLCNs and was partially inserted into the hydrophobic region of the LLCNs. In conclusion, this study suggests that coating-modified nanoparticles do not necessarily avoid interacting with proteins, and we should also study coating-modified nanoparticles interacting with proteins both in vitro and in vivo. In the future, finding a coating material to completely inhibit the interaction between LLCNs and proteins will generate a great impetus to promote the clinical transformation of LLCNs.
Collapse
Affiliation(s)
- Ziqiao Zhong
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Zhiwei Chen
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yuke Xie
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|