1
|
Husseini RA, Ibrahim TM, Hamed E, Gomaa E, Faisal MM, Wan G, Amin M, Alkolaib AM, Abdelnabi DM. Fabrication and Optimization of a Silodosin In Situ-Forming PLGA Implants for the Treatment of Benign Prostatic Hyperplasia: In Vitro and In Vivo Study. Pharmaceutics 2024; 16:1364. [PMID: 39598487 PMCID: PMC11597075 DOI: 10.3390/pharmaceutics16111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives: Lower urinary tract symptoms (LUTSs) related to benign prostatic hyperplasia (BPH) are common in older men, and alpha-adrenoceptor blockers continue to be a key part of managing these symptoms. This study aimed to formulate injectable poly (lactic-co-glycolic acid) (PLGA) in situ-forming implants (ISFIs) loaded with silodosin (SLD) to address symptoms associated with BPH. This method, which ensures prolonged therapeutic effects of SLD, is intended to decrease dosing frequency and improve treatment outcomes, leading to better patient adherence. Methods: An appropriate solvent with favorable PLGA solubility, viscosity, and in vitro release profile was selected. Additionally, an I-optimal design was employed as an optimization technique. An in vivo study in albino male rats was conducted to investigate prostate-specific antigens (PSAs), prostate weight and prostatic index, histopathology, and SLD pharmacokinetics. Results: The optimized formulation showed experimental values of 29.25% for the initial burst after 2 h and 58.23% for the cumulative release of SLD after 10 days. Pharmacokinetic data revealed that the SLD-ISFI formulation had lower Cmax and higher AUC values than subcutaneous (SC) pure SLD and oral commercial SLD capsule, indicating the controlled-release impact and improved bioavailability of the ISFI systems. SLD-ISFI produced a marked drop in the prostatic index by 2.09-fold compared to the positive control. Serum PSA level decreased significantly from 0.345 ± 0.007 to 0.145 ± 0.015 ng/mL after SLD-ISFI injection compared to the positive control. Conclusions: This study indicated that the optimized SLD-ISFI formulation proved its efficacy in managing BPH.
Collapse
Affiliation(s)
- Rabab A. Husseini
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.A.H.); (T.M.I.); (E.G.); (M.M.F.)
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.A.H.); (T.M.I.); (E.G.); (M.M.F.)
| | - Eslam Hamed
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.A.H.); (T.M.I.); (E.G.); (M.M.F.)
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), Cairo 11837, Egypt
| | - Mennatullah M. Faisal
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.A.H.); (T.M.I.); (E.G.); (M.M.F.)
| | - Ghadeer Wan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (G.W.); (M.A.)
| | - Manna Amin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (G.W.); (M.A.)
| | - Ali M. Alkolaib
- Department of Pharmaceutics, Faculty of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Dina M. Abdelnabi
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.A.H.); (T.M.I.); (E.G.); (M.M.F.)
| |
Collapse
|
2
|
de Souza Furtado P, Agnes Silva Camargo de Oliveira A, Santiago Rodrigues P, Rita Santiago de Paula Gonçalves A, Raphaella Autran Colaço A, Pinheiro da Costa S, Muniz da Paz M, Wetler Meireles Carreiros Assumpção P, Pereira Rangel L, Simon A, Almada do Carmo F, Mendes Cabral L, Cunha Sathler P. In vivo evaluation of time-dependent antithrombotic effect of rivaroxaban-loaded poly(lactic-co-glycolic acid)/sodium lauryl sulfate or didodecyl dimethylammonium bromide nanoparticles in Wistar rats. Eur J Pharm Biopharm 2023; 190:184-196. [PMID: 37517449 DOI: 10.1016/j.ejpb.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Rivaroxaban (RVX), an oral direct factor Xa inhibitor, is being explored as an alternative to traditional anticoagulans. However, RVX still faces pharmacokinetic limitations and adverse effects, highlighting the need for more effective formulations. In this regard, pharmaceutical nanotechnology, particularly the use of polymeric nanoparticles (PNPs), offers a promising approach for optimizing RVX delivery. This study aimed to develop and physicochemically characterize RVX-loaded poly(lactic-co-glycolic acid) (PLGA)/sodium lauryl sulfate (SLS) or didodecyl dimethylammonium bromide (DMAB) nanoparticles, and also evaluate their pharmacological and toxicological profiles as a potential therapeutic strategy. The PNPs exhibited sizes below 300 nm and spherical morphology, with both negative and positive surface charges, according to surfactant used. They demonstrated high encapsulation efficiency and suitable yields, as well as rapid initial liberation followed by sustained release in different pH environments. Importantly, in vivo evaluations revealed a time-dependent antithrombotic effect surpassing the free form of RVX when administered orally in SLS or DMAB PNP. No hemolytic or cytotoxic effects were observed at various concentrations of the PNPs. Interestingly, the PNPs did not induce hemorrhagic events or cause liver enzyme alterations in vivo. These findings suggest that RVX-loaded SLS or DMAB PNPs are promising innovative therapeutic alternatives for the treatment of thromboembolic diseases.
Collapse
Affiliation(s)
- Priscila de Souza Furtado
- Universidade Federal do Rio de Janeiro, LabHEx, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | | | - Pryscila Santiago Rodrigues
- Universidade Federal do Rio de Janeiro, LabHEx, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | | | - Anna Raphaella Autran Colaço
- Universidade Federal do Rio de Janeiro, LabHEx, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Sandro Pinheiro da Costa
- Universidade Federal do Rio de Janeiro, LabHEx, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Mariana Muniz da Paz
- Universidade Federal do Rio de Janeiro, LBT, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | | | - Luciana Pereira Rangel
- Universidade Federal do Rio de Janeiro, LBT, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Alice Simon
- Universidade Federal do Rio de Janeiro, LabTIF, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Flávia Almada do Carmo
- Universidade Federal do Rio de Janeiro, LabTIF, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Lucio Mendes Cabral
- Universidade Federal do Rio de Janeiro, LabTIF, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Plínio Cunha Sathler
- Universidade Federal do Rio de Janeiro, LabHEx, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Scatolino MV, Bufalino L, Dias MC, Mendes LM, da Silva MS, Tonoli GHD, de Souza TM, Junior FTA. Copaiba oil and vegetal tannin as functionalizing agents for açai nanofibril films: valorization of forest wastes from Amazonia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66422-66437. [PMID: 35501446 DOI: 10.1007/s11356-022-20520-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The applicability of cellulose nanofibrils (CNFs) has received attention due to their attractive properties. This study proposes the functionalization of açai CNFs with copaiba oil and vegetal tannins to produce films with potential for packaging. Bio-based films were evaluated by vapor permeability, colorimetry, and mechanical strength. CNFs were produced by mechanical fibrillation, from suspensions of bleached açai fibers and commercial eucalipytus pulp. Moreover, copaiba oil and vegetal tannin were added to the CNFs to produce films/nanopapers by casting from both suspensions with concentrations of 1% (based on CNF dry mass). The bulk densities of the eucalyptus CNF films were higher (1.126-1.171 g cm-3) compared to the açai CNF ones. Films from eucalyptus and açai pulps containing copaiba oil and tannins presented higher Tonset and Tmax, respectively (312 and 370 °C). Films with açaí CNFs functionalized with copaiba oil and tannin showed the lowest permeability value (370 g day-1 m-2). Films produced with eucalyptus pulp, and eucalyptus pulp functionalized with copaiba oil highlighted by superior mechanical strength, achieving 133.8 and 121.4 MPa, respectively. The evaluation of colorimetry showed a greater tendency to yellowing for açai films, especially those functionalized with vegetal tannins. Besides the low cost, functionalized vegetal-based nanomaterials could have attractive properties, with potential for application as some kind of packaging, for transporting basic products, such as breads, flours, or products with low moisture content, enabling efficient utilization of forest wastes.
Collapse
Affiliation(s)
- Mário Vanoli Scatolino
- Department of Production Engineering, State University of Amapá - UEAP, Macapá, AP, Brazil.
- PROFNIT - Postgraduate Program on Intellectual Property and Technology Transfer for Innovation, Federal University of Amapá - UNIFAP, Macapá, AP, Brazil.
| | - Lina Bufalino
- Department of Forest Sciences, Rural Federal University of Amazonia - UFRA, Belém, PA, Brazil
| | - Matheus Cordazzo Dias
- Department of Forest Sciences, Federal University of Lavras - UFLA, Perimetral Av., POB 3037, Lavras, MG, Brazil
| | - Lourival Marin Mendes
- Department of Forest Sciences, Federal University of Lavras - UFLA, Perimetral Av., POB 3037, Lavras, MG, Brazil
| | - Mateus Souza da Silva
- Department of Forest Sciences, Federal University of Lavras - UFLA, Perimetral Av., POB 3037, Lavras, MG, Brazil
| | | | | | - Francisco Tarcisio Alves Junior
- Department of Production Engineering, State University of Amapá - UEAP, Macapá, AP, Brazil
- PROFNIT - Postgraduate Program on Intellectual Property and Technology Transfer for Innovation, Federal University of Amapá - UNIFAP, Macapá, AP, Brazil
| |
Collapse
|
4
|
Saito MS, Zatta KC, Sathler PC, Furtado PS, C O Miguel N, Frattani FF, Berger M, Lavayen V, Pohlmann AR, Guterres SS. Therapeutic implementation in arterial thrombosis with pulmonary administration of fucoidan microparticles containing acetylsalicylic acid. Int J Pharm 2022; 622:121841. [PMID: 35623486 DOI: 10.1016/j.ijpharm.2022.121841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022]
Abstract
Several antithrombotic drugs are available to treat cardiovascular diseases due to its high mortality and morbidity worldwide. Despite these, severe adverse effects that can lead to treatment withdrawal have been described, highlighting the importance of new therapies. Thus, this work describes the development of fucoidan microparticles containing acetylsalicylic acid (MP/F4M) for pulmonary delivery and in vitro, ex vivo, and in vivo evaluation. Microparticles were prepared via spray-drying and characterized in vitro (mucoadhesive properties, coagulation time, platelet aggregation, adhesion, and hemolysis) followed by ex vivo platelet aggregation, in vivo arterial thrombosis, and hemorrhagic profile. The formulation physicochemical characterization showed suitable characteristics along with delayed drug release, increased breathable particle fraction, and high washability resistance as well as antiplatelet activity and enhanced platelet adhesion in vitro. In in vivo assays, MP/F4M protected against arterial thrombosis, without changes in the hemorrhagic profile. Finally, no lung changes were observed after prolonged pulmonary administration, whereas isolated ASA led to an inflammatory response. In conclusion, pulmonary administration of fucoidan microparticles with an antiplatelet drug may be an alternative therapy to treat cardiovascular diseases, opening the field for different formulations.
Collapse
Affiliation(s)
- Max S Saito
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, RS, Brazil.
| | - Kelly C Zatta
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, RS, Brazil
| | - Plínio C Sathler
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Rio de Janeiro
| | - Priscila S Furtado
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Rio de Janeiro
| | - Nádia C O Miguel
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Flávia F Frattani
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Rio de Janeiro
| | - Markus Berger
- Laboratory of Biochemical Pharmacology, Experimental Research Center, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul
| | - Vladimir Lavayen
- Postgraduate Program in Chemistry, Federal University of Rio Grande do Sul, RS, Brazil
| | - Adriana R Pohlmann
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, RS, Brazil
| | - Sílvia S Guterres
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, RS, Brazil
| |
Collapse
|