1
|
Alkatheeri A, Salih S, Kamil N, Alnuaimi S, Abuzar M, Abdelrahman SS. Nano-Radiopharmaceuticals in Colon Cancer: Current Applications, Challenges, and Future Directions. Pharmaceuticals (Basel) 2025; 18:257. [PMID: 40006069 PMCID: PMC11859487 DOI: 10.3390/ph18020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Colon cancer remains a significant global health challenge; however, the treatment outcome for colon patients can be improved through early detection and effective treatment. Nano-radiopharmaceuticals, combining nanotechnology with radiopharmaceuticals, are emerging as a revolutionary approach in both colon cancer diagnostic imaging and therapy, playing a significant role in the management of colon cancer patients. This review examines the use of nano-radiopharmaceuticals in the diagnosis and treatment of colon cancer, highlighting current applications, challenges, and future directions. Nanocarriers of radionuclides have shown potential in improving cancer treatment, including liposomes, microparticles, nanoparticles, micelles, dendrimers, and hydrogels, which are approved by the FDA. These nanocarriers can deliver targeted drugs into malignant cells without affecting normal cells, reducing side effects. Antibody-guided systemic radionuclide-targeted therapy has shown potential for treating cancer. Novel cancer nanomedicines, like Hensify and 32P BioSilicon, are under clinical development for targeted radiation delivery in percutaneous intratumoral injections. Although using nano-radiopharmaceuticals is a superior technique for diagnosing and treating colon cancer, there are limitations and challenges, such as the unintentional accumulation of nanoparticles in healthy tissues, which leads to toxicity due to biodistribution issues, as well as high manufacturing costs that limit their availability for patients. However, the future direction is moving toward providing more precise radiopharmaceuticals, which is crucial for enhancing the diagnosis and treatment of colon cancer and reducing production costs.
Collapse
Affiliation(s)
- Ajnas Alkatheeri
- Department of Radiography and Medical Imaging, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates;
| | - Suliman Salih
- Department of Radiography and Medical Imaging, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates;
- National Cancer Institute, University of Gezira, Wad Madani 2667, Sudan
| | - Noon Kamil
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates; (N.K.); (S.A.); (M.A.)
| | - Sara Alnuaimi
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates; (N.K.); (S.A.); (M.A.)
| | - Memona Abuzar
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates; (N.K.); (S.A.); (M.A.)
| | | |
Collapse
|
2
|
Tong J, Chen B, Volpi T, Li Y, Ellison PA, Cai Z. Current Advances in PARP1-Targeted Theranostics. J Labelled Comp Radiopharm 2025; 68:e4135. [PMID: 39995212 DOI: 10.1002/jlcr.4135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) plays critical roles in DNA repair, chromatin regulation, and cellular equilibrium, positioning it as a pivotal target for therapeutic interventions in cancer and central nervous system (CNS) disorders. PARP1 responds to oxidative stress and DNA damage through PARylation, influencing energy depletion, survival, inflammation, and genomic regulation in many biological scenarios. PARP inhibitors (PARPis) have demonstrated efficacy against cancers harboring defective homologous recombination repair pathways, notably those linked to BRCA mutations. PARP1-targeted PET imaging enables patient stratification, treatment assessment, and PARPi pharmacodynamic evaluation in cancers and other pathophysiological conditions. Importantly, PARP1-targeted theranostics have emerged for both diagnostic imaging and therapeutic applications in multiple types of cancers, representing a pivotal advancement in personalized oncology. However, its application in brain tumors is limited by the heterogeneous integrity of the blood brain barrier (BBB) and the blood-tumor barrier. Thus, the development of BBB-penetrant PARP1 tracers remains an unmet need for imaging brain cancers. This review summarizes the current landscape of radiopharmaceuticals and radioligands targeting PARP1, detailing their pharmacological characteristics and potential clinical uses. Furthermore, this review discusses PARP1 tracers that can cross the BBB, underscoring their potential applications in neurooncology and other neurological disorders.
Collapse
Affiliation(s)
- Jie Tong
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Baosheng Chen
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Tommaso Volpi
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Yawen Li
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Paul A Ellison
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Ismuha RR, Ritawidya R, Daruwati I, Muchtaridi M. Future Prospect of Low-Molecular-Weight Prostate-Specific Membrane Antigen Radioisotopes Labeled as Theranostic Agents for Metastatic Castration-Resistant Prostate Cancer. Molecules 2024; 29:6062. [PMID: 39770150 PMCID: PMC11679579 DOI: 10.3390/molecules29246062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Prostate cancer ranks as the fourth most common cancer among men, with approximately 1.47 million new cases reported annually. The emergence of prostate-specific membrane antigen (PSMA) as a critical biomarker has revolutionized the diagnosis and treatment of prostate cancer. Recent advancements in low-molecular-weight PSMA inhibitors, with their diverse chemical structures and binding properties, have opened new avenues for research and therapeutic applications in prostate cancer management. These novel agents exhibit enhanced tumor targeting and specificity due to their small size, facilitating rapid uptake and localization at the target site while minimizing the retention in non-target tissues. The primary aim of this study is to evaluate the potential of low-molecular-weight PSMA inhibitors labeled with radioisotopes as theranostic agents for prostate cancer. This includes assessing their efficacy in targeted imaging and therapy and understanding their pharmacokinetic properties and mechanisms of action. This study is a literature review focusing on in vitro and clinical research data. The in vitro studies utilize PSMA-targeted radioligands labeled with radioisotopes to assess their binding affinity, specificity, and internalization in prostate cancer cell lines. Additionally, the clinical studies evaluate the safety, effectiveness, and biodistribution of radiolabeled PSMA ligands in patients with advanced prostate cancer. The findings indicate promising outcomes regarding the safety and efficacy of PSMA-targeted radiopharmaceuticals in clinical settings. The specific accumulation of these agents in prostate tumor lesions suggests their potential for various applications, including imaging and therapy. This research underscores the promise of radiopharmaceuticals targeting PSMA in advancing the diagnosis and treatment of prostate cancer. These agents improve diagnostic accuracy and patients' outcomes by enhancing imaging capabilities and enabling personalized treatment strategies.
Collapse
Affiliation(s)
- Ratu Ralna Ismuha
- Department of Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Department of Pharmacy, Dharmais Cancer Hospital—National Cancer Center, Jakarta 11420, Indonesia
| | - Rien Ritawidya
- Center for Research on Radioisotope Technology, Radiopharmaceuticals, and Biodosimetry, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia; (R.R.); (I.D.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| | - Isti Daruwati
- Center for Research on Radioisotope Technology, Radiopharmaceuticals, and Biodosimetry, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia; (R.R.); (I.D.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| |
Collapse
|
4
|
Zulu JN, Katebe RN, Ramli MN, Sakala RN, Mwape EN, Chipasha EN, Hang'ombe BM. Exploring the Use of Ambientally Stored Methylene Diphosphonate Radiopharmaceutical Aliquots in Solving Challenging Situations in Developing Countries. World J Nucl Med 2024; 23:264-269. [PMID: 39677347 PMCID: PMC11637648 DOI: 10.1055/s-0044-1788278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Objectives The primary aim was to evaluate the prolonged quality characteristics of methyl diphosphonate (MDP) aliquots during ambient storage over a specified duration. This study further investigated potential additives that could enhance the stability of MDP aliquots stored under such conditions. Materials and Methods This was a laboratory-based experimental study conducted at the University Teaching Adult Hospital in Lusaka, Zambia. A total of 36 MDP aliquots stored at ambient conditions and 4 MDP aliquots stored at conventional refrigerated frozen conditions were labeled with technitium-99m ( 99m Tc) and tested for radiochemical purity (RCP) and other quality characteristics. A comparative analysis of the stability and quality of MDP aliquots from the two cohorts was then conducted. Statistical Analysis Stata 14 was used to analyze the data on the RCP of all MDP aliquots. Results The RCP of ambient stored MDP aliquots was found to be ranging from 98 to 99%, while that for frozen and refrigerated ones ranged from 99 to 100%. There was also a 1% increase in RCP for both cohorts with argon gas purging (98 and 99%, respectively). Conclusion The RCP of MDP aliquots from both cohorts was much higher than the required minimum of 90% implying that there was no significant association of their stability and quality with the mode of storage. However, purging with argon gas seemed to increase the stability further in both streams. The study findings show potential for application in resource-constrained environments and centers, especially in developing countries, where challenges to maintain the cold storage chain of these important radiopharmaceuticals are likely to be encountered due to power outages.
Collapse
Affiliation(s)
- Jenipher None Zulu
- Pharmacy/School of Health Sciences, Levy Mwanawasa Medical University, Zambia
| | - Reuben None Katebe
- Department of Technology and Science, Ministry of Higher Education, Lusaka, Zambia
- Department of Nuclear Science, National Institute for Scientific Research, Lusaka, Zambia
| | - Martalena None Ramli
- Department of Radiopharmaceuticals, Centre for Radiopharmaceutical Production, Indonesia
| | - Rita None Sakala
- Department of Nuclear Medicine/Radiopharmacy Unity, University Teaching Hospital, Zambia
| | - Elias None Mwape
- Department of Nuclear Medicine, University Teaching Hospital, Zambia
| | | | | |
Collapse
|
5
|
İlem-Özdemir D, Santos-Oliveira R. Can radiopharmaceuticals be delivered by quantum dots? Expert Opin Drug Deliv 2024; 21:1689-1691. [PMID: 39420518 DOI: 10.1080/17425247.2024.2419446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Derya İlem-Özdemir
- Faculty of Pharmacy, Department of Radiopharmacy, Ege University, Bornova, Izmir, Turkey
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Synthesis of Novel Radiopharmaceuticals and Nanoradiopharmacy, Rio de Janeiro, Brazil
- Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Calistri S, Ottaviano G, Ubaldini A. Radiopharmaceuticals for Pancreatic Cancer: A Review of Current Approaches and Future Directions. Pharmaceuticals (Basel) 2024; 17:1314. [PMID: 39458955 PMCID: PMC11510189 DOI: 10.3390/ph17101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The poor prognosis of pancreatic cancer requires novel treatment options. This review examines the evolution of radiopharmaceuticals in the treatment of pancreatic cancer. Established strategies such as peptide receptor radionuclide therapy (PRRT) offer targeted and effective treatment, compared to conventional treatments. However, there are currently no radiopharmaceuticals approved for the treatment of pancreatic cancer in Europe, which requires further research and novel approaches. New radiopharmaceuticals including radiolabeled antibodies, peptides, and nanotechnological approaches are promising in addressing the challenges of pancreatic cancer therapy. These new agents may offer more specific targeting and potentially improve efficacy compared to traditional therapies. Further research is needed to optimize efficacy, address limitations, and explore the overall potential of these new strategies in the treatment of this aggressive and harmful pathology.
Collapse
Affiliation(s)
- Sara Calistri
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy; (G.O.); (A.U.)
| | - Giuseppe Ottaviano
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy; (G.O.); (A.U.)
| | - Alberto Ubaldini
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy; (G.O.); (A.U.)
| |
Collapse
|
7
|
Shah A, Dabhade A, Bharadia H, Parekh PS, Yadav MR, Chorawala MR. Navigating the landscape of theranostics in nuclear medicine: current practice and future prospects. Z NATURFORSCH C 2024; 79:235-266. [PMID: 38807355 DOI: 10.1515/znc-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Theranostics refers to the combination of diagnostic biomarkers with therapeutic agents that share a specific target expressed by diseased cells and tissues. Nuclear medicine is an exciting component explored for its applicability in theranostic concepts in clinical and research investigations. Nuclear theranostics is based on the employment of radioactive compounds delivering ionizing radiation to diagnose and manage certain diseases employing binding with specifically expressed targets. In the realm of personalized medicine, nuclear theranostics stands as a beacon of potential, potentially revolutionizing disease management. Studies exploring the theranostic profile of radioactive compounds have been presented in this review along with a detailed explanation of radioactive compounds and their theranostic applicability in several diseases. It furnishes insights into their applicability across diverse diseases, elucidating the intricate interplay between these compounds and disease pathologies. Light is shed on the important milestones of nuclear theranostics beginning with radioiodine therapy in thyroid carcinomas, MIBG labelled with iodine in neuroblastoma, and several others. Our perspectives have been put forth regarding the most important theranostic agents along with emerging trends and prospects.
Collapse
Affiliation(s)
- Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Akshada Dabhade
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Hetvi Bharadia
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mayur R Yadav
- Department of Pharmacy Practice and Administration, Western University of Health Science, 309 E Second St, Pomona, CA, 91766, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
8
|
Andrew J, Ezra-Manicum AL, Witika BA. Developments in radionanotheranostic strategies for precision diagnosis and treatment of prostate cancer. EJNMMI Radiopharm Chem 2024; 9:62. [PMID: 39180599 PMCID: PMC11344754 DOI: 10.1186/s41181-024-00295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Prostate Cancer (PCa) is the second most diagnosed urological cancer among men worldwide. Conventional methods used for diagnosis of PCa have several pitfalls which include lack of sensitivity and specificity. On the other hand, traditional treatment of PCa poses challenges such as long-term side effects and the development of multidrug resistance (MDR). MAIN BODY Hence, there is a need for novel PCa agents with the potential to lessen the burden of these adverse effects on patients. Nanotechnology has emerged as a promising approach to support both early diagnosis and effective treatment of tumours by ensuring precise delivery of the drug to the targeted site of the disease. Most cancer-related biological processes occur on the nanoscale hence application of nanotechnology has been greatly appreciated and implemented in the management and therapeutics of cancer. Nuclear medicine plays a significant role in the non-invasive diagnosis and treatment of PCa using appropriate radiopharmaceuticals. This review aims to explore the different radiolabelled nanomaterials to enhance the specific delivery of imaging and therapeutic agents to cancer cells. Thereafter, the review appraises the advantages and disadvantages of these modalities and then discusses and outlines the benefits of radiolabelled nanomaterials in targeting cancerous prostatic tumours. Moreover, the nanoradiotheranostic approaches currently developed for PCa are discussed and finally the prospects of combining radiopharmaceuticals with nanotechnology in improving PCa outcomes will be highlighted. CONCLUSION Nanomaterials have great potential, but safety and biocompatibility issues remain. Notwithstanding, the combination of nanomaterials with radiotherapeutics may improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Jubilee Andrew
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Amanda-Lee Ezra-Manicum
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria, South Africa
| | - Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa.
| |
Collapse
|
9
|
Kolay S, Kumar N, Guleria M, Das T. [ 99mTc]Tc-labeled HYNIC conjugated chlorambucil as a tumor targeting Agent: Synthesis, characterization and ex-vivo evaluation. Bioorg Med Chem Lett 2024; 105:129730. [PMID: 38583784 DOI: 10.1016/j.bmcl.2024.129730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Chlorambucil is an alkylating drug that finds application towards chemotherapy of different types of cancers. In order to explore the possibility of utilization of this drug as an imaging agent for early diagnosis of solid tumors, attempt was made to synthesize a 99mTc complex of chlorambucil and evaluate its potential in tumor bearing small animal model. HYNIC-chlorambucil was synthesized by conjugation of HYNIC with chlorambucil via an ethylenediamine linker. All the intermediates and final product were purified and characterized by standard spectroscopic techniques viz. FT-IR, 1H/13C-NMR as well as by mass spectrometry. HYNIC-chlorambucil conjugate was radiolabeled with [99mTc]Tc and found to be formed with > 95 % radiochemical purity via RP-HPLC studies. The partition coefficient (Log10Po/w) of the synthesized complex was found to be -0.78 ± 0.25 which indicated the moderate hydrophilic nature for the complex. Biological behaviour of [99mTc]Tc-HYNIC-chlorambucil, studied in fibrosarcoma bearing Swiss mice, revealed a tumor uptake of about 4.16 ± 1.52 %IA/g at 30 min post-administration, which declined to 1.91 ± 0.13 % IA/g and 1.42 ± 0.14 %IA/g at 1 h and 2 h post-administration, respectively. A comparison of different [99mTc]Tc-chlorambucil derivatives (reported in the contemporary literature) formulated using different methodologies revealed that tumor uptake and pharmacokinetics exhibited by these agents strongly depend on the lipophilicity/hydrophilicity of such agents, which in turn is dependent on the bifunctional chelators used for formulating the radiolabeled chlorambucils.
Collapse
Affiliation(s)
- Soumi Kolay
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Naveen Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Mohini Guleria
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
10
|
Ayoub VR, Abdel-Mottaleb MMA, Ibrahem IT, Motaleb MA, Geneidi AS. Novel radioiodinated desvenlafaxine-loaded lipid nanocapsule for brain delivery. Arch Pharm (Weinheim) 2024; 357:e2300618. [PMID: 38161231 DOI: 10.1002/ardp.202300618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Lipid nanocapsules (LNCs) are lipid nanocarriers developed for drug delivery enhancement. The antidepressant drug desvenlafaxine (DSV) was entrapped in LNC to improve its brain delivery. Different DSV-loaded LNCs formulae using different oils and surfactants were studied to obtain the optimum formula for further studies. In vivo biodistribution studies were done using Swiss albino mice by intravenous injection of DSV-loaded LNCs by radioiodination technique. The optimum DSV-loaded LNC formula was obtained by using Labrafil® M1944CS as the oil and Solutol® HS15 as the surfactant in the ratio of 1:1, with a particle size of 34.28 ± 0.41 nm, a polydispersity index of 0.032 ± 0.05, a zeta potential of -25.77 ± 1.41, and good stability for up to 6 months. The in vivo biodistribution and pharmacokinetics data ensure the bioavailability improvement for DSV brain delivery as Cmax and AUC(1-t) increased more than double for intravenously DSV-loaded LNCs compared with the DSV solution. In conclusion, the results obtained from this study give an insight into the great potential of using DSV-loaded LNC for the enhancement of brain delivery.
Collapse
Affiliation(s)
- Veronia R Ayoub
- Department of Labelled Compounds, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mona M A Abdel-Mottaleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ismail T Ibrahem
- Department of Labelled Compounds, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed A Motaleb
- Department of Labelled Compounds, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmed S Geneidi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Gandhi S, Shende P. Anti-CD64 Antibody-Conjugated PLGA Nanoparticles Containing Methotrexate and Gold for Theranostics Application in Rheumatoid Arthritis. AAPS PharmSciTech 2024; 25:22. [PMID: 38267687 DOI: 10.1208/s12249-024-02733-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Rheumatoid arthritis, an autoimmune disorder, exerts a considerable effect on quality of life. The inflammatory mechanism involved in rheumatoid arthritis is not clearly known, and therefore the need to develop effective medicines as well as new methods for early detection is a challenge. In this study, we developed PLGA nanoparticles containing gold and methotrexate in core and anti-CD64 antibody conjugated to nanoparticle surface via coupling process. The nanoparticles were examined for their surface morphology using SEM and TEM. The mean particle size, zeta potential, and PDI values of nanoparticles were 413.6 ± 2.89 nm, -10.12 ± 2.12 mV, and 0.23 ± 0.04, respectively, indicating good stability and particle homogeneity. In vitro drug release revealed a controlled release pattern with 93.44 ± 1.60% up to 72 h of release in the presence of pH 5.8, indicating the influence of pH and NIR on drug release. In vivo results on adjuvant-induced arthritis on Wistar rats indicated that animals receiving antibody-conjugated nanoparticles showed improvement in clinical indices and arthritic score as compared to non-conjugated nanoparticles and free drugs. This innovative drug delivery system will be an excellent strategy to maximize therapeutic effectiveness by limiting dosage-related side effects.
Collapse
Affiliation(s)
- Sahil Gandhi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
12
|
Çetin O, Güngör B, İçhedef Ç, Parlak Y, Bilgin ES, Üstün F, Durmuş Altun G, Başpınar Y, Teksöz S. Development of a Radiolabeled Folate-Mediated Drug Delivery System for Effective Delivery of Docetaxel. ACS OMEGA 2023; 8:25316-25325. [PMID: 37483227 PMCID: PMC10357535 DOI: 10.1021/acsomega.3c02656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
Many preclinical studies are carried out with the aim of developing new formulations for the effective delivery of taxane class drugs, one of the most important anticancer drugs used clinically today. In this study, a radiolabeled folate-mediated solid lipid magnetic nanoparticle (SLMNP) system was developed by loading superparamagnetic iron oxide nanoparticles (MNP) and docetaxel (DTX) into the solid lipid nanoparticles as a drug delivery system that will function both in cancer treatment and diagnosis. For this purpose, first, SLMNP was synthesized by the hot homogenization method, and the surface of the particles was modified with a folate derivative to carry the particles to tissues with folate receptors. The synthesized magnetic solid lipid nanoparticles were loaded with DTX, and then radiolabeling was carried out with technetium-99 m (99mTc-DTX-SLMNP). Structural characteristics of these nanoparticles were determined by characterization methods. According to the TEM images of MNPs, SLN, and SLMNPs, MNPs were observed between 25and 35 nm, SLNs between 400 and 500 nm, and SLMNPs between 350 and 450 nm. The drug entrapment efficiency of SLMNPs loaded with DTX was found to be 19%, and the percentage efficiency of radiolabeling was found to be 98.0 ± 2.0%. The biological behavior of this radiolabeled system was investigated in vitro and in vivo. Folate receptor-positive SKOV-3 and folate receptor-negative A549 cancer cell lines were studied. The IC50 values of DTX-SLMNP in SKOV-3 and A549 cells were 50.21 and 172.27 μM at 48 h, respectively. Gamma camera imaging studies of 99mTc-DTX-SLMNP and magnetically applied 99mTc-DTX-SLMNP compounds were performed on tumor-bearing CD-1 nude mice. The uptake in the folate receptor-positive tumor region was higher than that in the folate receptor negative tumor region. We proposed that the drug delivery system we prepared in this study be evaluated for preclinical studies of new drug carrier formulations of the taxane class of anticancer drugs.
Collapse
Affiliation(s)
- Oğuz Çetin
- Department
of Nuclear Applications, Institute of Nuclear
Sciences, Ege University, Izmir 35100, Turkey
| | - Burcu Güngör
- Department
of Nuclear Applications, Institute of Nuclear
Sciences, Ege University, Izmir 35100, Turkey
| | - Çiğdem İçhedef
- Department
of Nuclear Applications, Institute of Nuclear
Sciences, Ege University, Izmir 35100, Turkey
| | - Yasemin Parlak
- Department
of Nuclear Medicine, School of Medicine, Celal Bayar University, Manisa 45040, Turkey
| | - Elvan Sayıt Bilgin
- Department
of Nuclear Medicine, School of Medicine, Celal Bayar University, Manisa 45040, Turkey
| | - Funda Üstün
- Department
of Nuclear Medicine, Faculty of Medicine, Trakya University, Edirne 22030, Turkey
| | - Gülay Durmuş Altun
- Department
of Nuclear Medicine, Faculty of Medicine, Trakya University, Edirne 22030, Turkey
| | - Yücel Başpınar
- Department
of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Serap Teksöz
- Department
of Nuclear Applications, Institute of Nuclear
Sciences, Ege University, Izmir 35100, Turkey
| |
Collapse
|
13
|
Blades R, Ittner LM, Tietz O. Peptides for trans-blood-brain barrier delivery. J Labelled Comp Radiopharm 2023; 66:237-248. [PMID: 37002811 PMCID: PMC10952576 DOI: 10.1002/jlcr.4023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Trans-blood-brain barrier (BBB) delivery of therapeutic and diagnostic agents is a major challenge in the development of central nervous system (CNS) targeted radiopharmaceuticals. This review is an introduction to the use of peptides as delivery agents to transport cargos into the CNS. The most widely used BBB-penetrating peptides are reviewed here, with a particular emphasis on the broad range of cargos delivered into the CNS using these. Cell-penetrating peptides (CPPs) have been deployed as trans-BBB delivery agents for some time; new developments in the CPP field offer exciting opportunities for the design of next generation trans-BBB complexes. Many of the peptides highlighted here are ready to be combined with diagnostic and therapeutic radiopharmaceuticals to develop highly effective CNS-targeted agents.
Collapse
Affiliation(s)
- Reuben Blades
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Lars M. Ittner
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Ole Tietz
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
14
|
Balcer E, Sobiech M, Luliński P. Molecularly Imprinted Carriers for Diagnostics and Therapy-A Critical Appraisal. Pharmaceutics 2023; 15:1647. [PMID: 37376096 DOI: 10.3390/pharmaceutics15061647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Simultaneous diagnostics and targeted therapy provide a theranostic approach, an instrument of personalized medicine-one of the most-promising trends in current medicine. Except for the appropriate drug used during the treatment, a strong focus is put on the development of effective drug carriers. Among the various materials applied in the production of drug carriers, molecularly imprinted polymers (MIPs) are one of the candidates with great potential for use in theranostics. MIP properties such as chemical and thermal stability, together with capability to integrate with other materials are important in the case of diagnostics and therapy. Moreover, the MIP specificity, which is important for targeted drug delivery and bioimaging of particular cells, is a result of the preparation process, conducted in the presence of the template molecule, which often is the same as the target compound. This review focused on the application of MIPs in theranostics. As a an introduction, the current trends in theranostics are described prior to the characterization of the concept of molecular imprinting technology. Next, a detailed discussion of the construction strategies of MIPs for diagnostics and therapy according to targeting and theranostic approaches is provided. Finally, frontiers and future prospects are presented, stating the direction for further development of this class of materials.
Collapse
Affiliation(s)
- Emilia Balcer
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Sobiech
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Luliński
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
15
|
Nikitin E, Mironova E, Shpakovsky D, Gracheva Y, Koshelev D, Utochnikova V, Lyssenko K, Oprunenko Y, Yakovlev D, Litvinov R, Seryogina M, Spasov A, Milaeva E. Cytotoxic and Luminescent Properties of Novel Organotin Complexes with Chelating Antioxidant Ligand. Molecules 2022; 27:molecules27238359. [PMID: 36500450 PMCID: PMC9741287 DOI: 10.3390/molecules27238359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
A novel polydentate chelating antioxidant ligand and series of organotin complexes on its base were synthesized and characterized by NMR 1H, 13C, 119Sn, IR spectroscopy, X-ray, and elemental analysis. Their antioxidant activity was evaluated in DPPH and NBT-tests, and as lipoxygenase inhibitory activity. It was shown that ligand alone is a radical scavenger, while introducing tin in the structure of the compound significantly decreases its activity. For the ligand alone the ability to strongly suppress the formation of advanced glycation end products (AGEs) was shown, which may be associated with the established antiradical activity. All synthesized compounds appeared to be moderate lipoxygenase inhibitors. The stability of compounds to hydrolysis under different pH was estimated. The ligand undergoes decomposition after about an hour, while organotin complexes on its base demonstrate vast stability, showing signs of decomposition only after 5 h of experimentation. Cytotoxicity of compounds was studied by standard MTT-test, which showed unorthodox results: the ligand itself demonstrated noticeable cytotoxicity while the introduction of organotin moiety either did not affect the toxicity levels or reduced them instead of increasing. Organotin complexes possess luminescence both as powders and DMSO solutions, its quantum yields reaching 67% in DMSO. The combination of luminescence with unique cytotoxic properties allows us to propose the synthesized compounds as perspective theranostic agents.
Collapse
Affiliation(s)
- Evgeny Nikitin
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Ekaterina Mironova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitry Shpakovsky
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Yulia Gracheva
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Daniil Koshelev
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Valentina Utochnikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Konstantin Lyssenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Yury Oprunenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitry Yakovlev
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 1 Pavshikh Bortsov Sq., Volgograd 400131, Russia
| | - Roman Litvinov
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 1 Pavshikh Bortsov Sq., Volgograd 400131, Russia
| | - Mariya Seryogina
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 1 Pavshikh Bortsov Sq., Volgograd 400131, Russia
| | - Alexander Spasov
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 1 Pavshikh Bortsov Sq., Volgograd 400131, Russia
| | - Elena Milaeva
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Correspondence: ; Tel.: +7-(495)939-52-49
| |
Collapse
|
16
|
Xu J, Ning J, Wang Y, Xu M, Yi C, Yan F. Carbon dots as a promising therapeutic approach for combating cancer. Bioorg Med Chem 2022; 72:116987. [DOI: 10.1016/j.bmc.2022.116987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
|
17
|
Parrilha GL, dos Santos RG, Beraldo H. Applications of radiocomplexes with thiosemicarbazones and bis(thiosemicarbazones) in diagnostic and therapeutic nuclear medicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|