1
|
Yalin W, Xinyun T, Yin H, Ke H, Quanhui L, Jinxing W, Song W. Novel fabrication of hydroxypropyl-β-cyclodextrin functionalized zein protein nanoparticles Co-encapsulated with bio-molecules to attenuate pregnancy-induced hypertension by inducing trophoblast cells proliferation with TLR4 signaling pathway. J Biomater Appl 2025:8853282251322272. [PMID: 40029236 DOI: 10.1177/08853282251322272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Trophoblast dysfunction during pregnancy time is majorly involved to lead pathogenesis of preeclampsia. In the present investigation, the facile nanoformulation by Zein protein particles functionalized with hydroxypropyl-beta-cyclodextrin (β-CD) and co-encapsulated with curcumin and eugenol compounds (Cu/Eu@H-β-CD-ZNPs) is developed to achieve enhanced therapeutic potential in the treatment of preeclampsia. To investigate the positive trophoblast function, trophoblast cells were treated and observed for in vitro cell proliferation, invasion and migration ability under hypoxic condition. The Cu/Eu@H-β-CD-ZNPs have significantly induced the restoration ability of trophoblast cells. In vivo animal study was performed using pregnancy rat models by inducing LPS and observed the hypertension-related factors. The Cu/Eu@H-β-CD-ZNPs prominently down-regulated the expressions of serum and placental pro-inflammatory factors (IL-6, TNF-α, IL1β, and IFN-γ). Additionally, p65 and TLR4 protein expressions in LPS-induced model were effectively downregulated after administration of Cu/Eu@H-β-CD-ZNPs. Results of current investigation provides evidence for combination of Cur/Eug with novel H-β-CD-ZNPs formulation have therapeutic potential on the treatment of pregnancy-induced hypertension by rat models.
Collapse
Affiliation(s)
- Wang Yalin
- Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Tong Xinyun
- Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - He Yin
- Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Huang Ke
- Department of Obstetrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Luo Quanhui
- Department of Obstetrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Wang Jinxing
- Department of Obstetrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Wu Song
- Department of Gynecology II, Xi'an Daxing Hospital, Xi'an, PR China
| |
Collapse
|
2
|
Diken-Gür S, Avcioglu NH, Bakhshpour-Yücel M, Denizli A. Antimicrobial assay and controlled drug release studies with novel eugenol imprinted p(HEMA)-bacterial cellulose nanocomposite, designed for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2137-2152. [PMID: 38965881 DOI: 10.1080/09205063.2024.2366646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
In this study, a novel bio-composite material that allow sustained release of plant derived antimicrobial compound was developed for the biomedical applications to prevent the infections caused by microorganisms resistant to commercial antimicrobials agents. With this aim, bacterial cellulose (BC)-p(HEMA) nanocomposite film that imprinted with eugenol (EU) via metal chelated monomer, MAH was prepared. Firstly, characterization studies were utilized by FTIR, SEM and BET analysis. Then antimicrobial assays, drug release studies and in vitro cytotoxicity test were performed. A significant antimicrobial effect against both Gram (+) Staphylococcus aureus and Gram (-) Escherichia coli bacteria and a yeast Candida albicans were observed even in low exposure time periods. When antimicrobial effect of EU compared with commercially used agents, both antifungal and antibacterial activity of EU were found to be higher. Then, sustained drug release studies showed that approximately 55% of EU was released up to 50 h. This result proved the achievement of the molecular imprinting for an immobilization of molecules that desired to release on an area in a long-time interval. Finally, the in vitro cytotoxicity experiment performed with the mouse L929 cell line determined that the synthesized EU-imprinted BC nanocomposite was biocompatible.
Collapse
Affiliation(s)
- Sinem Diken-Gür
- Department of Biology, Hacettepe University, Ankara, Türkiye
| | | | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
3
|
da Silva Campelo M, Câmara Neto JF, de Souza ÁL, Ferreira MKA, Dos Santos HS, Gramosa NV, de Aguiar Soares S, Ricardo NMPS, de Menezes JESA, Ribeiro MENP. Clove volatile oil-loaded nanoemulsion reduces the anxious-like behavior in adult zebrafish. Daru 2023; 31:183-192. [PMID: 37639147 PMCID: PMC10624781 DOI: 10.1007/s40199-023-00473-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Clove volatile oil (CVO) and its major compound, eugenol (EUG), have anxiolytic effects, but their clinical use has been impaired due to their low bioavailability. Thus, their encapsulation in nanosystems can be an alternative to overcome these limitations. OBJECTIVES This work aims to prepare, characterize and study the anxiolytic potential of CVO loaded-nanoemulsions (CVO-NE) against anxious-like behavior in adult zebrafish (Danio rerio). METHODS The CVO-NE was prepared using Agaricus blazei Murill polysaccharides as stabilizing agent. The drug-excipient interactions were performed, as well as colloidal characterization of CVO-NE and empty nanoemulsion (B-NE). The acute toxicity and potential anxiolytic activity of CVO, EUG, CVO-NE and B-NE against adult zebrafish models were determined. RESULTS CVO, EUG, CVO-NE and B-NE presented low acute toxicity, reduced the locomotor activity and anxious-like behavior of the zebrafish at 4 - 20 mg kg-1. CVO-NE reduced the anxious-like behavior of adult zebrafish without affecting their locomotor activity. In addition, it was demonstrated that anxiolytic activity of CVO, EUG and CVO-NE is linked to the involvement of GABAergic pathway. CONCLUSION Therefore, this study demonstrates the anxiolytic effect of CVO, in addition to providing a new nanoformulation for its administration.
Collapse
Affiliation(s)
- Matheus da Silva Campelo
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, CE, 60455-760, Fortaleza, Brasil
| | - João Francisco Câmara Neto
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, CE, 60455-760, Fortaleza, Brasil
| | - Álamo Lourenço de Souza
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, CE, 60455-760, Fortaleza, Brasil
| | - Maria Kueirislene Amâncio Ferreira
- Laboratório de Produtos Naturais, Centro de Ciência e Tecnologia, Universidade Estadual do Ceará, Campus Itaperi, 60714-903, Fortaleza, CE, Brasil
| | - Hélcio Silva Dos Santos
- Laboratório de Produtos Naturais, Centro de Ciência e Tecnologia, Universidade Estadual do Ceará, Campus Itaperi, 60714-903, Fortaleza, CE, Brasil
- Centro de Ciência e Tecnologia - Curso de Química, Universidade Estadual Vale do Acaraú, 62010-295, Sobral, CE, Brasil
| | - Nilce Viana Gramosa
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, CE, 60455-760, Fortaleza, Brasil
| | - Sandra de Aguiar Soares
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, CE, 60455-760, Fortaleza, Brasil
| | - Nágila Maria Pontes Silva Ricardo
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, CE, 60455-760, Fortaleza, Brasil
| | - Jane Eire Silva Alencar de Menezes
- Laboratório de Produtos Naturais, Centro de Ciência e Tecnologia, Universidade Estadual do Ceará, Campus Itaperi, 60714-903, Fortaleza, CE, Brasil.
| | - Maria Elenir Nobre Pinho Ribeiro
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, CE, 60455-760, Fortaleza, Brasil.
| |
Collapse
|
4
|
Akhlaq A, Ashraf M, Omer MO, Altaf I. Carvacrol-Fabricated Chitosan Nanoparticle Synergistic Potential with Topoisomerase Inhibitors on Breast and Cervical Cancer Cells. ACS OMEGA 2023; 8:31826-31838. [PMID: 37692253 PMCID: PMC10483689 DOI: 10.1021/acsomega.3c03337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Breast and cervical cancers are the most common heterogeneous malignancies in women. Chemotherapy with conventional drug delivery systems having several limitations along with development of multidrug resistance compelled us to seek out targeted therapeutics. Nanoparticles are suitable substitutes to circumvent multidrug resistance for the targeted treatment of cancer. The current study was aimed to investigate the anticancer effect of carvacrol-loaded chitosan nanoparticles with topoisomerase inhibitors. The average size of carvacrol-loaded chitosan nanoparticles was found to be 80 nm with 24.7 mV ζ-potential, and maximum absorbance was observed at 275 nm. Among all drug combinations, the carvacrol nanoparticles with the doxorubicin combination group exerted greater dose-dependent growth inhibition of both MCF-7 and HeLa cells as compared to single carvacrol nanoparticles and doxorubicin. Combination index values of carvacrol nanoparticles and the doxorubicin combination group showed a strong synergistic effect as they were found to be between 0.2 and 0.4, 0.31 for MCF-7 and 0.34 for HeLa cells. The carvacrol nanoparticles in combination with doxorubicin on MCF-7 cells reduced the dose 16.32-fold for carvacrol nanoparticles and 4.09-fold for doxorubicin at 6.23 μg/mL IC50, while on HeLa cells, this combination reduced the dose 13.18-fold for carvacrol nanoparticles and 3.83-fold for doxorubicin at 9.33 μg/mL IC50. As the dose reduction values were greater than 1, they indicated favorable dose reduction. It was concluded that the combination of carvacrol-loaded chitosan nanoparticles with topoisomerase inhibitors may represent an innovative and promising strategy to improve the efficacy, resistance, and targeted delivery of chemotherapeutics in cancer.
Collapse
Affiliation(s)
- Amina Akhlaq
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Ashraf
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Ovais Omer
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Imran Altaf
- Institute
of Microbiology, University of Veterinary
and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
5
|
El-Sherbiny MM, Elekhtiar RS, El-Hefnawy ME, Mahrous H, Alhayyani S, Al-Goul ST, Orif MI, Tayel AA. Fabrication and assessment of potent anticancer nanoconjugates from chitosan nanoparticles, curcumin, and eugenol. Front Bioeng Biotechnol 2022; 10:1030936. [PMID: 36568301 PMCID: PMC9773392 DOI: 10.3389/fbioe.2022.1030936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
In cancer management and control, the most challenging difficulties are the complications resulting from customized therapies. The constitution of bioactive anticancer nanoconjugates from natural derivatives, e.g., chitosan (Ct), curcumin (Cur), and eugenol (Eug), was investigated for potential alternatives to cancer cells' treatment. Ct was extracted from Erugosquilla massavensis (mantis shrimp); then, Ct nanoparticles (NCt) was fabricated and loaded with Cur and/or Eug using crosslinking emulsion/ionic-gelation protocol and evaluated as anticancer composites against CaCo2 "colorectal adenocarcinoma" and MCF7 "breast adenocarcinoma" cells. Ct had 42.6 kDa molecular weight and 90.7% deacetylation percentage. The conjugation of fabricated molecules/composites and their interactions were validated via infrared analysis. The generated nanoparticles (NCt, NCt/Cur, NCt/Eug, and NCt/Cur/Eug composites) had mean particle size diameters of 268.5, 314.9, 296.4, and 364.7 nm, respectively; the entire nanoparticles carried positive charges nearby ≥30 mV. The scanning imaging of synthesized nanoconjugates (NCt/Cur, NCt/Eug, and NCt/Cur/Eug) emphasized their homogenous distributions and spherical shapes. The cytotoxic assessments of composited nanoconjugates using the MTT assay, toward CaCo2 and MCF7 cells, revealed elevated anti-proliferative and dose-dependent activities of all nanocomposites against treated cells. The combined nanocomposites (NCt/Eug/Cur) emphasized the highest activity against CaCo2 cells (IC50 = 11.13 μg/ml), followed by Cur/Eug then NCt/Cur. The exposure of CaCo2 cells to the nanocomposites exhibited serious DNA damages and fragmentation in exposed cancerous cells using the comet assay; the NCt/Eug/Cur nanocomposite was the most forceful with 9.54 nm tail length and 77.94 tail moment. The anticancer effectuality of innovatively combined NCt/Cur/Eug nanocomposites is greatly recommended for such biosafe, natural, biocompatible, and powerful anticancer materials, especially for combating colorectal adenocarcinoma cells, with elevated applicability, efficiency, and biosafety.
Collapse
Affiliation(s)
- Mohsen M. El-Sherbiny
- Department of Marine Biology, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Mohsen M. El-Sherbiny, ; Ahmed A. Tayel, ,
| | - Rawan S. Elekhtiar
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Mohamed E. El-Hefnawy
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hoda Mahrous
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Sultan Alhayyani
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soha T. Al-Goul
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed I. Orif
- Department of Marine Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A. Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt,*Correspondence: Mohsen M. El-Sherbiny, ; Ahmed A. Tayel, ,
| |
Collapse
|
6
|
Comparative evaluation of carvacrol and eugenol chitosan nanoparticles as eco-friendly preservative agents in cosmetics. Int J Biol Macromol 2022; 206:288-297. [PMID: 35240208 DOI: 10.1016/j.ijbiomac.2022.02.164] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022]
Abstract
The current status of controversy regarding the use of certain preservatives in cosmetic products makes it necessary to seek new ecological alternatives that are free of adverse effects on users. In our study, two different natural terpenes Carvacrol and Eugenol were encapsulated in chitosan nanoparticles in different ratios of Chitosan:terpene. The nanoparticles were characterized by DLS and TEM showing a maximum particle size of 100 nm. The chemical structure, thermal properties, and release profile of terpenes were evaluated showing a successful protection of terpene in Chitosan matrix. Two different release profile were observed showing a faster release profile in the case of Eugenol. Antimicrobial properties of nanoparticles were evaluated against typical microbial contaminants found in cosmetic products, showing higher antimicrobial properties with chitosan encapsulation of terpenes. Furthermore, natural moisturizing cream inoculated with beforementioned microorganisms was formulated with Carvacrol-chitosan nanoparticles and Eugenol-chitosan nanoparticles to evaluate the preservative efficiency, indicating a highest preservative efficiency with the use of Eugenol-chitosan nanoparticles.
Collapse
|
7
|
Mondéjar-López M, López-Jiménez AJ, Martínez JCG, Ahrazem O, Gómez-Gómez L, Niza E. Thymoquinone-Loaded Chitosan Nanoparticles as Natural Preservative Agent in Cosmetic Products. Int J Mol Sci 2022; 23:ijms23020898. [PMID: 35055080 PMCID: PMC8778794 DOI: 10.3390/ijms23020898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
The current status of controversy regarding the use of certain preservatives in cosmetic products makes it necessary to seek new ecological alternatives that are free of adverse effects on users. In our study, the natural terpene thymoquinone was encapsulated in chitosan nanoparticles. The nanoparticles were characterized by DLS and TEM, showing a particle size of 20 nm. The chemical structure, thermal properties, and release profile of thymoquinone were evaluated and showed a successful stabilization and sustained release of terpenes. The antimicrobial properties of the nanoparticles were evaluated against typical microbial contaminants found in cosmetic products, showing high antimicrobial properties. Furthermore, natural moisturizing cream inoculated with the aforementioned microorganisms was formulated with thymoquinone-chitosan nanoparticles to evaluate the preservative efficiency, indicating its promising use as a preservative in cosmetics.
Collapse
Affiliation(s)
- María Mondéjar-López
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (M.M.-L.); (A.J.L.-J.); (O.A.); (L.G.-G.)
| | - Alberto José López-Jiménez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (M.M.-L.); (A.J.L.-J.); (O.A.); (L.G.-G.)
| | - Joaquín C. García Martínez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain;
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| | - Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (M.M.-L.); (A.J.L.-J.); (O.A.); (L.G.-G.)
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (M.M.-L.); (A.J.L.-J.); (O.A.); (L.G.-G.)
| | - Enrique Niza
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (M.M.-L.); (A.J.L.-J.); (O.A.); (L.G.-G.)
- Correspondence:
| |
Collapse
|