1
|
Siridechakorn I, Shinta DN, Ardiansah A, Batsomboon P, Ngamrojanavanich N, Choodej S, Pudhom K. Tyrosinase Inhibitory Properties of Compounds Isolated from Artocarpus integer Roots. JOURNAL OF NATURAL PRODUCTS 2024; 87:2790-2800. [PMID: 39552474 DOI: 10.1021/acs.jnatprod.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A comprehensive phytochemical investigation of Artocarpus integer root extract led to the isolation of two new geranylated xanthones (1 and 2), one new geranylated flavone (3), one new flavanone (4), and one unique benzopyran (5), along with 16 known compounds. Structures of the new compounds were elucidated by a combination of spectroscopic and computational methods. Two different types of compounds, flavone 12 and arylbenzofuran 19, displayed the most potent antityrosinase activity with IC50 values of 1.7 ± 0.2 and 1.2 ± 0.1 μM, respectively. In addition, kinetic measurements and molecular docking simulations of compounds 12 and 19 were performed and revealed that compound 12 is a competitive inhibitor binding with the tyrosinase active site, while compound 19 is a noncompetitive tyrosinase inhibitor binding the enzyme at the allosteric site.
Collapse
Affiliation(s)
- Ittipon Siridechakorn
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dina Nur Shinta
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ardiansah Ardiansah
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paratchata Batsomboon
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road Laksi, Bangkok 10210, Thailand
| | | | - Siwattra Choodej
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Khanitha Pudhom
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Masuri S, Era B, Pintus F, Floris S, Meloni F, Pettinau F, Podda E, Cabiddu MG, Fais A, Pivetta T. Design, Synthesis, Structural Insights, Tyrosinase Inhibition, and Sun Protection Factor of New Thiosemicarbazone Derivatives. Molecules 2024; 29:5629. [PMID: 39683787 DOI: 10.3390/molecules29235629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Tyrosinase, a key protein in the biosynthesis of melanin pigments, is crucial in determining skin pigmentation. Inhibiting tyrosinase activity is a promising approach for treating conditions related to excessive pigmentation. For the synthesis of more potent tyrosinase inhibitors, we combined two approaches, para-substitution and lipophilicity, to enhance the inhibitory properties of (E)-2-(4-hydroxybenzylidene)hydrazine-1-carbotiamide, whose enzyme inhibitory properties have been previously demonstrated. The newly synthesized compounds showed potent inhibition activity against tyrosinase in the micromolar concentration range. The synthesised compounds were up to 41 times more effective than kojic acid. In addition to this biological activity, all molecules were evaluated for their sun protection factor to determine their photoprotective effects. All the compounds showed higher efficacy than reference compounds, used as sunscreens in photoprotective preparations. All compounds were noncytotoxic at the concentration required to inhibit tyrosinase activity. With the aim of defining the potential binding modes and the kind of interactions between the studied molecules and the catalytic site of mushroom tyrosinase, molecular docking simulations were also performed.
Collapse
Affiliation(s)
- Sebastiano Masuri
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Francesca Meloni
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Francesca Pettinau
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Enrico Podda
- Centre for Research University Services (CeSAR), University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Maria Grazia Cabiddu
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Tiziana Pivetta
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
3
|
El-Sharkawy RM, El-Hadary AE, Essawy HS, El-Sayed ASA. Rutin of Moringa oleifera as a potential inhibitor to Agaricus bisporus tyrosinase as revealed from the molecular dynamics of inhibition. Sci Rep 2024; 14:20131. [PMID: 39209920 PMCID: PMC11362471 DOI: 10.1038/s41598-024-69451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Tyrosinase is a binuclear copper-containing enzyme that catalyzes the conversation of monophenols to diphenols via o-hydroxylation and then the oxidation of o-diphenols to o-quinones which is profoundly linked to eukaryotic melanin synthesis and fruits browning. The hyperpigmentation due to unusual tyrosinase activity has gained growing health concern. Plants and their metabolites are considered promising and effective sources for potent antityrosinase enzymes. Hence, searching for potent, specific tyrosinase inhibitor from different plant extracts is an alternative approach in regulating overproduction of tyrosinase. Among the tested extracts, the hydro-alcoholic extract of Moringa oleifera L. leaves displayed the potent anti-tyrosinase activity (IC50 = 98.93 µg/ml) in a dose-dependent manner using L-DOPA as substrate; however, the kojic acid showed IC50 of 88.92 µg/ml. The tyrosinase-diphenolase (TYR-Di) kinetic analysis revealed mixed inhibition type for the Ocimum basilicum L. and Artemisia annua L. extracts, while the Coriandrum sativum L. extract displayed a non-competitive type of inhibition. Interestingly, the extract of Moringa oleifera L. leaves exhibited a competitive inhibition, low inhibition constant of free enzyme ( K ii app ) value and no Pan-Assay Interfering Substances, hinting the presence of strong potent inhibitors. The major putative antityrosinase compound in the extract was resolved, and chemically identified as rutin based on various spectroscopic analyses using UV-Vis, FTIR, mass spectrometry, and 1H NMR. The in silico computational molecular docking has been performed using rutin and A. bisporus tyrosinase (PDB code: 2Y9X). The binding energy of the predicted interaction between tropolone native ligand, kojic acid, and rutin against 2Y9X was respectively - 5.28, - 4.69, and - 7.75 kcal/mol. The docking simulation results revealed the reliable binding of rutin to the amino acid residues (ASN260, HIS259, SER282) in the tyrosinase catalytic site. Based on the developed results, rutin extracted from M. oleifera L. leaves has the capability to be powerful anti-pigment agent with a potential application in cosmeceutical area. In vivo studies are required to unravel the safety and efficiency of rutin as antityrosinase compound.
Collapse
Affiliation(s)
- Reyad M El-Sharkawy
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt
| | - Abdalla E El-Hadary
- Biochemistry Department, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Heba S Essawy
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
4
|
Hu J, Chen B, Qu S, Liu S, Yang X, Qiao K, Su Y, Liu Z, Chen X, Liu Z, Wang Q. Anti-Melanogenic Effects of Takifugu flavidus Muscle Hydrolysate in B16F10 Melanoma Cells and Zebrafish. Mar Drugs 2024; 22:206. [PMID: 38786597 PMCID: PMC11122720 DOI: 10.3390/md22050206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Abnormal melanogenesis can lead to hyperpigmentation. Tyrosinase (TYR), a key rate-limiting enzyme in melanin production, is an important therapeutic target for these disorders. We investigated the TYR inhibitory activity of hydrolysates extracted from the muscle tissue of Takifugu flavidus (TFMH). We used computer-aided virtual screening to identify a novel peptide that potently inhibited melanin synthesis, simulated its binding mode to TYR, and evaluated functional efficacy in vitro and in vivo. TFMH inhibited the diphenolase activities of mTYR, reducing TYR substrate binding activity and effectively inhibiting melanin synthesis. TFMH indirectly reduced cAMP response element-binding protein phosphorylation in vitro by downregulating melanocortin 1 receptor expression, thereby inhibiting expression of the microphthalmia-associated transcription factor, further decreasing TYR, tyrosinase related protein 1, and dopachrome tautomerase expression and ultimately impeding melanin synthesis. In zebrafish, TFMH significantly reduced black spot formation. TFMH (200 μg/mL) decreased zebrafish TYR activity by 43% and melanin content by 52%. Molecular dynamics simulations over 100 ns revealed that the FGFRSP (T-6) peptide stably binds mushroom TYR via hydrogen bonds and ionic interactions. T-6 (400 μmol/L) reduced melanin content in B16F10 melanoma cells by 71% and TYR activity by 79%. In zebrafish, T-6 (200 μmol/L) inhibited melanin production by 64%. TFMH and T-6 exhibit good potential for the development of natural skin-whitening cosmetic products.
Collapse
Affiliation(s)
- Jinjin Hu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Bei Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Shuaijie Qu
- School of Life Sciences, Xiamen University, Xiamen 361100, China; (S.Q.); (X.Y.)
| | - Shuji Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Xiaoyu Yang
- School of Life Sciences, Xiamen University, Xiamen 361100, China; (S.Q.); (X.Y.)
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Yongchang Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Zhihui Liu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Xiaoe Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Qin Wang
- School of Life Sciences, Xiamen University, Xiamen 361100, China; (S.Q.); (X.Y.)
| |
Collapse
|
5
|
Bouhlel Chatti I, Krichen Y, Horchani M, Maatouk M, Trabelsi A, Lassoued MA, Ben Jannet H, Ghédira LC. Anthraquinones from Rhamnus alaternus L.: A Phytocosmetic Ingredient with Photoprotective and Antimelanogenesis Properties. Chem Biodivers 2024; 21:e202300876. [PMID: 38037520 DOI: 10.1002/cbdv.202300876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
The purpose of the present work was to develop a phytocosmetic sunscreen emulsion with antioxidant activity and an anti-melanogenic effect, containing an anthraquinone-enriched extract of Rhamnus alaternus (A.E.). Our findings demonstrated that A.E. decreased the levels of reactive oxygen species, DNA damage, and malondialdehyde induced by UVA in human keratinocytes and melanocytes. Furthermore, the calculated SPF value in vitro of the cream containing A.E. was 14.26±0.152. Later, it was shown that A.E. extract had an inhibitory effect on the amount of melanin. This extract could also reduce B16F10 intracellular tyrosinase activity. Besides, docking studies were carried out to provide a logical justification for the anti-tyrosinase potential. The findings showed that, A.E. may provide protection against UVA-induced oxidative stress and could be thought of as a viable treatment for hyperpigmentation disorders.
Collapse
Affiliation(s)
- Ines Bouhlel Chatti
- Unity of Bioactive Natural Substances and Biotechnology, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, 5000, Monastir, Tunisia
- Department of Biology and Geology, Higher Institute of Applied Science and Technology of Gabe s, University of Gabes, Gabes, Tunisia
| | - Yosr Krichen
- Unity of Bioactive Natural Substances and Biotechnology, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Mabrouk Horchani
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Mouna Maatouk
- Unity of Bioactive Natural Substances and Biotechnology, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Amine Trabelsi
- Unity of Bioactive Natural Substances and Biotechnology, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Mohamed Ali Lassoued
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, Rue Avicenne, Monastir, Tunisia
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Leila Chekir Ghédira
- Unity of Bioactive Natural Substances and Biotechnology, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| |
Collapse
|
6
|
Ahmed HS, Abouzeid H, Mansour MA, Owis AI, Amin E, Darwish HW, Alanazi AS, Naguib IA, Afifi N. Antioxidant and Anti-Aging Phytoconstituents from Faucaria tuberculosa: In Vitro and In Silico Studies. Molecules 2023; 28:6895. [PMID: 37836738 PMCID: PMC10574154 DOI: 10.3390/molecules28196895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Research targeting natural cosmeceuticals is now increasing due to the safety and/or limited side effects of natural products that are highly valued in cosmetology. Within a research program exploring botanical sources for valuable skincare antioxidant components, the current study investigated the phytochemical content and the biological potential of Faucaria tuberculosa. Phytochemical investigation of F. tuberculosa extract resulted in purification and characterization of six phytoconstituents, including a new one. The structure of the new constituent was elucidated as (-) catechin-(2→1',4→2')-phloroglucinol (4). The structural identity of all isolated compounds were confirmed on the basis of extensive physical and spectral (1D, 2D-NMR and HRESIMS) investigations. The ethanolic extract exhibits a rich content of total phenolics (TPC) and total flavonoids (TFC), estimated as 32 ± 0.034 mg GAE/g and 43 ± 0.004 mg RE/g, respectively. In addition, the antioxidant (ABTS and FRAP), antihyaluronidase and antityrosinase activities of all purified phytoconstituents were evaluated. The results noted (-) catechin-(2→1',4→2') phloroglucinol (4) and phloroglucinol (1) for their remarkable antioxidant activity, while isorhamnetin 3-O-rutinoside (3) and 3,5-dihydroxyphenyl β-D-glucopyranoside (2) achieved the most potent inhibitory activity against tyrosinase (IC50 22.09 ± 0.7 µM and 29.96 ± 0.44 µM, respectively) and hyaluronidase enzymes (IC50 49.30 ± 1.57 µM and 62.58 ± 0.92, respectively) that remarkably exceeds the activity of the standard drugs kojic acid (IC50 = 65.21 ± 0.47 µM) and luteolin, (IC50 = 116.16 ± 1.69 µM), respectively. A molecular docking study of the two active compounds (3 and 2) highlighted their high potential to bind to the active sites of the two enzymes involved in the study.
Collapse
Affiliation(s)
- Hayam S. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt (A.I.O.)
| | - Hala Abouzeid
- Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Mostafa A. Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| | - Asmaa I. Owis
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt (A.I.O.)
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo 11785, Egypt
| | - Elham Amin
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt (A.I.O.)
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ashwag S. Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Naglaa Afifi
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt (A.I.O.)
| |
Collapse
|
7
|
Chib S, Jamwal VL, Kumar V, Gandhi SG, Saran S. Fungal production of kojic acid and its industrial applications. Appl Microbiol Biotechnol 2023; 107:2111-2130. [PMID: 36912905 DOI: 10.1007/s00253-023-12451-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
Kojic acid has gained its importance after it was known worldwide that the substance functions primarily as skin-lightening agent. Kojic acid plays a vital role in skin care products, as it enhances the ability to prevent exposure to UV radiation. It inhibits the tyrosinase formation which suppresses hyperpigmentation in human skin. Besides cosmetics, kojic acid is also greatly used in food, agriculture, and pharmaceuticals industries. Conversely, according to Global Industry Analysts, the Middle East, Asia, and in Africa especially, the demand of whitening cream is very high, and probably the market will reach to $31.2 billion by 2024 from $17.9 billion of 2017. The important kojic acid-producing strains were mainly belongs to the genus Aspergillus and Penicillium. Due to its commercial potential, it continues to attract the attention for its green synthesis, and the studies are still widely conducted to improve kojic acid production. Thus, the present review is focused on the current production processes, gene regulation, and limitation of its commercial production, probable reasons, and possible solutions. For the first time, detailed information on the metabolic pathway and the genes involved in kojic acid production, along with illustrations of genes, are highlighted in the present review. Demand and market applications of kojic acid and its regulatory approvals for its safer use are also discussed. KEY POINTS: • Kojic acid is an organic acid that is primarily produced by Aspergillus species. • It is mainly used in the field of health care and cosmetic industries. • Kojic acid and its derivatives seem to be safe molecules for human use.
Collapse
Affiliation(s)
- Shifali Chib
- Fermentation and Microbial Biotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vijay Lakshmi Jamwal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Infectious Disease Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Vinod Kumar
- Fermentation and Microbial Biotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit G Gandhi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Infectious Disease Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Saurabh Saran
- Fermentation and Microbial Biotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Zilles JC, Duarte LP, Ruaro TC, Zimmer AR, Kulkamp-Guerreiro IC, Contri RV. Nanoemulsion Containing Kojic Dipalmitate and Rosehip Oil: A Promising Formulation to Treat Melasma. Pharmaceutics 2023; 15:pharmaceutics15020468. [PMID: 36839792 PMCID: PMC9959276 DOI: 10.3390/pharmaceutics15020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Melasma is a hard-to-treat hyperpigmentation disorder. Combined incorporation of kojic dipalmitate (KDP), the esterified form of kojic acid, and rosehip oil, an oil with antioxidant and skin-regenerating properties, into nanocarrier systems appears to be a suitable strategy to develop high-performance formulations. A high-energy method (Ultra-Turrax®) was used to develop nanoemulsions containing up to 2 mg/mL KDP, 5% rosehip oil, and 7.5% surfactant. Formulations were characterized regarding droplet size, size distribution, pH, density, morphology, KDP content, incorporation efficiency, and stability under different temperature conditions. A scale-up study was conducted. Skin permeation, antioxidant potential, and tyrosinase inhibitory activity were assessed in vitro. Cell viability studies were also performed. Results showed that nanoemulsions containing 1 and 2 mg/mL KDP had incorporation efficiencies greater than 95%, droplet size smaller than 130 nm, suitable size distribution, zeta potential of approximately -10 mV, and good stability over 30 days of refrigerated storage. The nanoemulsion containing 1 mg/mL KDP was chosen for further evaluation because it had lower nanocrystal formation, greater scale-up feasibility and allowed KDP permeation up to the epidermis similarly than observed for 2 mg/mL KDP. This formulation (1 mg/mL KDP) showed antioxidant and depigmenting efficacy, close to that of 1 mM ascorbic acid. No cytotoxicity was observed in formulations concentrations ranging from 0.06% to 1%.
Collapse
Affiliation(s)
- Júlia Capp Zilles
- Programa de Pós-Graduação em Ciências Farmacêuticas–PPGCF, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Larissa Pedron Duarte
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Thaís Carine Ruaro
- Programa de Pós-Graduação em Ciências Farmacêuticas–PPGCF, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Aline Rigon Zimmer
- Programa de Pós-Graduação em Ciências Farmacêuticas–PPGCF, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Irene Clemes Kulkamp-Guerreiro
- Programa de Pós-Graduação em Ciências Farmacêuticas–PPGCF, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Renata Vidor Contri
- Programa de Pós-Graduação em Ciências Farmacêuticas–PPGCF, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
- Correspondence: ; Tel.: +55-51-3308-5416
| |
Collapse
|
9
|
Phytochemical profiling, in vitro biological activities, and in-silico molecular docking studies of Typha domingensis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
10
|
Zilles JC, Dos Santos FL, Kulkamp-Guerreiro IC, Contri RV. Biological activities and safety data of kojic acid and its derivatives - a review. Exp Dermatol 2022; 31:1500-1521. [PMID: 35960194 DOI: 10.1111/exd.14662] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
Kojic acid presents a variety of applications for human use, especially as a depigmenting agent. Its derivatives are also proposed in order to prevent chemical degradation, prevent adverse effects and improve efficacy. The aim of this study was to peer review the current scientific literature concerning the biological activities and safety data of kojic acid or its derivatives, aiming at human use, and trying to elucidate the action mechanisms. Three different databases were assessed and the word "kojic" was crossed with "toxicity", "adverse effect", "efficacy", "effect", "activity" and "safety". Articles were selected according to pre-defined criteria. Besides the depigmenting activity, kojic acid and derivatives can act as antioxidant, antimicrobial, anti-inflammatory, radioprotector, anticonvulsant and obesity management agents, and present potential as antitumor substances. Depigmenting activity is due to the molecules, after penetrating the cell, binding to tyrosinase active site, regulating melanogenesis factors, leucocytes modulation and free radical scavenging activity. Hence, polarity, size and ligands are also important factors for activity. Kojic acid and derivatives present cytotoxicity to some cancerous cell lines, including melanoma, hepatocellular carcinoma, ovarian cancer, breast cancer and colon cancer. Regarding safety, kojic acid or its derivatives are safe molecules for human use in the concentrations tested. Kojic acid and its derivatives have great potential for cosmetic, pharmaceutical and medical applications.
Collapse
Affiliation(s)
- Júlia Capp Zilles
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil
| | | | - Irene Clemes Kulkamp-Guerreiro
- Faculdade de Farmácia Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil
| | - Renata Vidor Contri
- Faculdade de Farmácia Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Ghalloo BA, Khan KUR, Ahmad S, Aati HY, Al-Qahtani JH, Ali B, Mukhtar I, Hussain M, Shahzad MN, Ahmed I. Phytochemical Profiling, In Vitro Biological Activities, and In Silico Molecular Docking Studies of Dracaena reflexa. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030913. [PMID: 35164177 PMCID: PMC8838819 DOI: 10.3390/molecules27030913] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 01/07/2023]
Abstract
Dracaena reflexa, a traditionally significant medicinal plant, has not been extensively explored before for its phytochemical and biological potential. The present study was conducted to evaluate the bioactive phytochemicals and in vitro biological activities of D. reflexa, and perform in silico molecular docking validation of D. reflexa. The bioactive phytochemicals were assessed by preliminary phytochemical testing, total bioactive contents, and GC-MS analysis. For biological evaluation, the antioxidant (DPPH, ABTS, CUPRAC, and ABTS), antibacterial, thrombolytic, and enzyme inhibition (tyrosinase and cholinesterase enzymes) potential were determined. The highest level of total phenolic contents (92.72 ± 0.79 mg GAE/g extract) was found in the n-butanol fraction while the maximum total flavonoid content (110 ± 0.83 mg QE/g extract) was observed in methanolic extract. The results showed that n-butanol fraction exhibited very significant tyrosinase inhibition activity (73.46 ± 0.80) and acetylcholinesterase inhibition activity (64.06 ± 2.65%) as compared to other fractions and comparable to the standard compounds (kojic acid and galantamine). The methanolic extract was considered to have moderate butyrylcholinesterase inhibition activity (50.97 ± 063) as compared to the standard compound galantamine (53.671 ± 0.97%). The GC-MS analysis of the n-hexane fraction resulted in the tentative identification of 120 bioactive phytochemicals. Furthermore, the major compounds as identified by GC-MS were analyzed using in silico molecular docking studies to determine the binding affinity between the ligands and the enzymes (tyrosinase, acetylcholinesterase, and butyrylcholinesterase enzymes). The results of this study suggest that Dracaena reflexa has unquestionable pharmaceutical importance and it should be further explored for the isolation of secondary metabolites that can be employed for the treatment of different diseases.
Collapse
Affiliation(s)
- Bilal Ahmad Ghalloo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (B.A.G.); (S.A.); (M.N.S.); (I.A.)
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (B.A.G.); (S.A.); (M.N.S.); (I.A.)
- Correspondence: (K.-u.-R.K.); (H.Y.A.); Tel.: 92-3366708638 (K.-u.-R.K.)
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (B.A.G.); (S.A.); (M.N.S.); (I.A.)
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
- Correspondence: (K.-u.-R.K.); (H.Y.A.); Tel.: 92-3366708638 (K.-u.-R.K.)
| | - Jawaher H. Al-Qahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Barkat Ali
- National Agri Research Institute-NARC, Park Road Chack Shahzad Islamabad, Islamabad 45600, Pakistan;
| | - Imran Mukhtar
- Faculty of Medicine & Allied Health Sciences, Sir Sadiq Muhammad Khan Abbasi Post Graduate Medical College, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Musaddique Hussain
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Muhammad Nadeem Shahzad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (B.A.G.); (S.A.); (M.N.S.); (I.A.)
| | - Imtiaz Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (B.A.G.); (S.A.); (M.N.S.); (I.A.)
| |
Collapse
|