1
|
Yi X, Song S, Cui Z, Li M, Huang Y, Zhang Z, Kuang L, Su H. Causal relationship between nitrogen dioxide and the risk of Parkinson's disease: Evidence from a Mendelian randomization study. Medicine (Baltimore) 2025; 104:e42582. [PMID: 40419892 DOI: 10.1097/md.0000000000042582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
Several recent observational studies have found associations between nitrogen dioxide (NO2) exposure and the risk of Parkinson's disease (PD), but the causal relationship between them remains unclear. Our objective is to employ a 2-sample Mendelian randomization (MR) approach to determine the causal effect of NO2 exposure on the risk of PD. MR analyses were performed using genome-wide association studies (GWAS) data on NO2 exposure (n = 456,380) and PD GWAS data (33,674 cases and 449,056 controls). Inverse variance weighting (IVW) was the primary analytical method used to examine causal effects, coupled with the MR-Egger, weighted median, weighted model and MR pleiotropy residual sum and outlier (MR-PRESSO). The main results of the IVW method (odds ratio: 4.701; 95% CI: 1.127-19.615, P = .034) showed evidence for a causal relationship between NO2 exposure and the risk of PD. Heterogeneity analyses was conducted using the MR-Egger method (Cochran's Q = 1.155; P = .764) and IVW (Cochran's Q = 1.356; P = .852) demonstrated no statistically significant heterogeneity among the selected SNPs. We employed MR-Egger regression (β intercept = -0.026; SE = 0.058; P = .684) and the MR-PRESSO global test (P = .840), which revealed no significant impact of pleiotropy on the results of the MR evaluation. Based on MR analysis, higher levels of NO2 exposure are causally associated with an increased risk of PD. Consequently, mitigating air pollution could be an important strategy for reducing the risk of PD.
Collapse
Affiliation(s)
- Xingxu Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Shasha Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Department of Gastroenterology, the Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhiqian Cui
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ming Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yuxin Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Zichen Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Lingmei Kuang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Center for Big Data and Population Health of IHM, Hefei, Anhui, China
| |
Collapse
|
2
|
Sabnam S, Kumar R, Pranav. Biofunctionalized nanomaterials for Parkinson's disease theranostics: potential for efficient PD biomarker detection and effective therapy. Biomater Sci 2025; 13:2201-2234. [PMID: 40036044 DOI: 10.1039/d5bm00179j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
α-Synuclein (α-Syn) is a primary pathological indicator for Parkinson's disease (PD). The α-Syn oligomer is even more toxic and is responsible for PD. Hence, identifying α-Syn and its oligomers is an interesting approach to diagnosing PD. The prevention strategies for oligomer formation could be therapeutic in treating PD. Various conventional strategies have been developed for the management of PD. However, their clinical applications are limited due to toxicity, off-targeting, side effects, and poor bioavailability. Recently, nanomaterials have gained significant attention due to unique physicochemical characteristics such as nanoscale size, large surface area, flexibility of functionalization, and ability to protect and control a loaded payload. Functionalizing the surface of nanoparticles with a desired targeting agent could offer targeted delivery of the payload at the site of action due to specificity and selectivity against complementary molecules. Among various functionalization approaches, biomolecule-functionalized nanomaterials offer benefits such as enhanced bioavailability, improved internalization into target cells through receptor-mediated endocytosis, and delivery of therapeutics across the BBB (blood-brain barrier). In this review, we initially discussed the major milestones related to PD and highlighted the therapeutic strategies focused on clinical trials. The strategies of biomolecule functionalization of nanomaterials and their application in detecting and preventing α-Syn oligomer for the diagnosis and therapy of PD, respectively, have been reviewed comprehensively. Ultimately, we have outlined the conclusions, highlighted the limitations and challenges, and provided insight into future perspectives and alternative approaches that must be investigated.
Collapse
Affiliation(s)
- Saheli Sabnam
- Centre for Nanosciences, Indian Institute of Technology Kanpur, India-208016
| | - Raj Kumar
- University Center for Research and Development, Chandigarh University, Gharuan, Punjab-140413, India.
| | - Pranav
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore Campus, India-632014.
| |
Collapse
|
3
|
Shah S, Chauhan H, Madhu H, Mori D, Soniwala M, Singh S, Prajapati B. Lipids Fortified Nano Phytopharmaceuticals: A Breakthrough Approach in Delivering Bio-actives for Improved Therapeutic Efficacy. Pharm Nanotechnol 2025; 13:70-89. [PMID: 38279712 DOI: 10.2174/0122117385277686231127050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 01/28/2024]
Abstract
Phytopharmaceuticals, derived from natural sources, manifest tremendous potential for therapeutic applications. Nevertheless, effective delivery of these bio-actives presents significant challenges. A breakthrough in fortifying phytopharmaceuticals within phosphatidylcholine is a promising remedy to overcome solubility, permeability, and other related drawbacks. This intrinsic lipid, which is obtained from both natural and synthetic sources, confers numerous benefits, encompassing heightened solubility, augmented bioavailability, and enhanced stability. The conjugation of phytopharmaceuticals with phosphatidylcholine enables improved dermal permeation, absorption, targeted distribution, and the possibility of synergistic results, eventually improving therapeutic efficacy. Additionally, the use of phytopharmaceuticals enriched with phosphatidylcholine presents a promising route for overcoming the limitations imposed by conventional delivery techniques, encouraging more effective treatments. The review provides a thorough analysis of phosphatidylcholine- incorporated phytopharmaceuticals as nanomedicine with variables that significantly affect their therapeutic efficacy. Moreover, the review elaborates on how phosphatidylcholine improves solubility, permeability, and tissue distribution and boosts the potential of phytopharmaceuticals. Further, the review underscores the significance of nano-formulation strategies, analytical methodologies, and forthcoming prospects to propel this field forward. Furthermore, the review emphasizes the potential inherent in this innovative approach while highlighting the importance of additional research endeavors and collaborative initiatives to unlock the therapeutic benefits of phosphatidylcholinefortified phytopharmaceuticals, enhancing patient well-being.
Collapse
Affiliation(s)
- Sunny Shah
- B. K. Mody Government Pharmacy College, Rajkot, Gujarat, 360003, India
| | - Harshida Chauhan
- B. K. Mody Government Pharmacy College, Rajkot, Gujarat, 360003, India
| | - Hardik Madhu
- B. K. Mody Government Pharmacy College, Rajkot, Gujarat, 360003, India
| | - Dhaval Mori
- B. K. Mody Government Pharmacy College, Rajkot, Gujarat, 360003, India
| | | | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Bhupendra Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, Gujarat, India
| |
Collapse
|
4
|
Goksu AY, Kocanci FG, Akinci E, Demir-Dora D, Erendor F, Sanlioglu S, Uysal H. Microglia cells treated with synthetic vasoactive intestinal peptide or transduced with LentiVIP protect neuronal cells against degeneration. Eur J Neurosci 2024; 59:1993-2015. [PMID: 38382910 DOI: 10.1111/ejn.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
A common pathological hallmark of neurodegenerative disorders is neuronal cell death, accompanied by neuroinflammation and oxidative stress. The vasoactive intestinal peptide (VIP) is a pleiotropic peptide that combines neuroprotective and immunomodulatory actions. The gene therapy field shows long-term promise for treating a wide range of neurodegenerative diseases (ND). In this study, we aimed to investigate the in vitro efficacy of transduction of microglia using lentiviral gene therapy vectors encoding VIP (LentiVIP). Additionally, we tested the protective effects of the secretome derived from LentiVIP-infected "immortalized human" microglia HMC3 cells, and cells treated with Synthetic VIP (SynVIP), against toxin-induced neurodegeneration. First, LentiVIP, which stably expresses VIP, was generated and purified. VIP secretion in microglial conditioned media (MG CM) for LentiVIP-infected HMC3 microglia cells was confirmed. Microglia cells were activated with lipopolysaccharide, and groups were formed as follows: 1) Control, 2) SynVIP-treated, or 3) LentiVIP-transduced. These MG CM were applied on an in vitro neurodegenerative model formed by differentiated (d)-SH-SY5Y cells. Then, cell survival analysis and apoptotic nuclear staining, besides measurement of oxidative/inflammatory parameters in CM of cells were performed. Activated MG CM reduced survival rates of both control and toxin-applied (d)-SH-SY5Y cells, whereas LentiVIP-infected MG CM and SynVIP-treated ones exhibited better survival rates. These findings were supported by apoptotic nuclear evaluations of (d)-SH-SY5Y cells, alongside oxidative/inflammatory parameters in their CM. LentiVIP seems worthy of further studies for the treatment of ND because of the potential of gene therapy to treat diseases effectively with a single injection.
Collapse
Affiliation(s)
- Azize Yasemin Goksu
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Fatma Gonca Kocanci
- Department of Medical Laboratory Techniques, Vocational High School of Health Services, Alanya Alaaddin Keykubat University, Alanya/Antalya, Turkey
| | - Ersin Akinci
- Brigham and Women's Hospital, Division of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Biotechnology, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Devrim Demir-Dora
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Fulya Erendor
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hilmi Uysal
- Department of Neurology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
5
|
Abujamai J, Satar R, Ansari SA. Designing and Formulation of Nanocarriers for "Alzheimer's and Parkinson's" Early Detection and Therapy. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1251-1262. [PMID: 38351689 DOI: 10.2174/0118715273297024240201055550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 08/28/2024]
Abstract
The potential of nanotechnology in advancing the diagnosis and treatment of neurodegenerative diseases is explored in this comprehensive literature review. The findings of these studies suggest that nanotechnology has the capacity to improve existing therapeutic approaches, create novel and safe compounds, and develop more precise imaging techniques and diagnostic methods for neurodegenerative diseases. With the emergence of the nanomedicine era, a new and innovative approach of diagnosing and treating these conditions has been introduced. Notably, the researchers' development of a nanocarrier drug delivery tool demonstrates immense potential compared to conventional therapy, as it maximizes therapeutic efficacy and minimizes undesirable as side effects.
Collapse
Affiliation(s)
- Jakleen Abujamai
- Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Rukhsana Satar
- Division of Biochemistry, Department of Physiology and Biochemistry, Ibn Sina National College for Medical Studies, Jeddah 22421, Saudi Arabia
| | - Shakeel Ahmed Ansari
- Department of Biochemistry, Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| |
Collapse
|
6
|
Boyton I, Valenzuela SM, Collins-Praino LE, Care A. Neuronanomedicine for Alzheimer's and Parkinson's disease: Current progress and a guide to improve clinical translation. Brain Behav Immun 2024; 115:631-651. [PMID: 37967664 DOI: 10.1016/j.bbi.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/19/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
Neuronanomedicine is an emerging multidisciplinary field that aims to create innovative nanotechnologies to treat major neurodegenerative disorders, such as Alzheimer's (AD) and Parkinson's disease (PD). A key component of neuronanomedicine are nanoparticles, which can improve drug properties and demonstrate enhanced safety and delivery across the blood-brain barrier, a major improvement on existing therapeutic approaches. In this review, we critically analyze the latest nanoparticle-based strategies to modify underlying disease pathology to slow or halt AD/PD progression. We find that a major roadblock for neuronanomedicine translation to date is a poor understanding of how nanoparticles interact with biological systems (i.e., bio-nano interactions), which is partly due to inconsistent reporting in published works. Accordingly, this review makes a set of specific recommendations to help guide researchers to harness the unique properties of nanoparticles and thus realise breakthrough treatments for AD/PD.
Collapse
Affiliation(s)
- India Boyton
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia
| | - Stella M Valenzuela
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia
| | | | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia.
| |
Collapse
|
7
|
Majumdar M, Badwaik H. Trends on Novel Targets and Nanotechnology-Based Drug Delivery System in the Treatment of Parkinson's disease: Recent Advancement in Drug Development. Curr Drug Targets 2024; 25:987-1011. [PMID: 39313872 DOI: 10.2174/0113894501312703240826070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that impacts a significant portion of the population. Despite extensive research, an effective cure for PD remains elusive, and conventional pharmacological treatments often face limitations in efficacy and management of symptoms. There has been a lot of discussion about using nanotechnology to increase the bioavailability of small- molecule drugs to target cells in recent years. It is possible that PD treatment might become far more effective and have fewer side effects if medication delivery mechanisms were to be improved. Potential alternatives to pharmacological therapy for molecular imaging and treatment of PD may lie in abnormal proteins such as parkin, α-synuclein, leucine-rich repeat serine and threonine protein kinase 2. Published research has demonstrated encouraging outcomes when nanomedicine-based approaches are used to address the challenges of PD therapy. So, to address the present difficulties of antiparkinsonian treatment, this review outlines the key issues and limitations of antiparkinsonian medications, new therapeutic strategies, and the breadth of delivery based on nanomedicine. This review covers a wide range of subjects, including drug distribution in the brain, the efficacy of drug-loaded nano-carriers in crossing the blood-brain barrier, and their release profiles. In PD, the nano-carriers are also used. Novel techniques of pharmaceutical delivery are currently made possible by vesicular carriers, which eliminate the requirement to cross the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Manisha Majumdar
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| | - Hemant Badwaik
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| |
Collapse
|
8
|
Vishwanath K, Wilson B, Geetha KM, Murugan V. Polysorbate 80-coated albumin nanoparticles to deliver paclitaxel into the brain to treat glioma. Ther Deliv 2023; 14:193-206. [PMID: 37291872 DOI: 10.4155/tde-2022-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Aim: To develop stable paclitaxel (PTX)-loaded bovine serum albumin (BSA) nanoparticles (BSA-NPs-PTX) as drug-delivery vehicles for delivering paclitaxel into the brain to treat glioma. Methods: This study used PTX-loaded BSA NPs coated with polysorbate 80 (Ps 80) to enhance PTX concentration in the brain. Results: The low IC50 indicated that the fabricated BSA-NPs-PTX and BSA-NPs-PTX-Ps 80 showed significantly enhanced cytotoxicity. The pharmacokinetic and biodistribution analysis of BSA-NPs-PTX and BSA-NPs-PTX 80 showed comparable pharmacokinetic profiles but were significantly different compared with free PTX. Conclusion: BSA-NPs-PTX-Ps 80 exhibited higher plasma concentration-time curves, as compared with BSA-NPs-PTX and PTX. BSA-NPs-PTX and BSA-NPs-PTX-Ps 80 showed significantly improved PTX distribution in the frontal cortex, posterior brain and cerebellum.
Collapse
Affiliation(s)
- Kurawattimath Vishwanath
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka, 560078, India
| | - Barnabas Wilson
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka, 560078, India
| | - Kannoth Mukundan Geetha
- Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka, 560078, India
| | - Vedigounder Murugan
- Department of Pharmaceutical Chemistry, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka, 560078, India
| |
Collapse
|
9
|
Glioblastoma Multiforme: Probing Solutions to Systemic Toxicity towards High-Dose Chemotherapy and Inflammatory Influence in Resistance against Temozolomide. Pharmaceutics 2023; 15:pharmaceutics15020687. [PMID: 36840009 PMCID: PMC9962012 DOI: 10.3390/pharmaceutics15020687] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 02/19/2023] Open
Abstract
Temozolomide (TMZ), the first-line chemotherapeutic drug against glioblastoma multiforme (GBM), often fails to provide the desired clinical outcomes due to inflammation-induced resistance amid inefficient drug delivery across the blood-brain barrier (BBB). The current study utilized solid lipid nanoparticles (SLNPs) for targeted delivery of TMZ against GBM. After successful formulation and characterization of SLNPs and conjugation with TMZ (SLNP-TMZ), their in-vitro anti-cancer efficacy and effect on the migratory potential of cancer cells were evaluated using temozolomide-sensitive (U87-S) as well as TMZ-resistant (U87-R) glioma cell lines. Elevated cytotoxicity and reduction in cell migration in both cell lines were observed with SLNP-TMZ as compared to the free drug (p < 0.05). Similar results were obtained in-vivo using an orthotopic xenograft mouse model (XM-S and XM-R), where a reduction in tumor size was observed with SLNP-TMZ treatment compared to TMZ. Concomitantly, higher concentrations of the drug were found in brain tissue resections of mice treated with SLNP-TMZ as compared to other vital organs than mice treated with free TMZ. Expression of inflammatory markers (Interleukin-1β, Interleukin-6 and Tumor Necrosis factor-α) in a resistant cell line (U87-R) and its respective mouse model (XM-R) were also found to be significantly elevated as compared to the sensitive U87-S cell line and its respective mouse model (XM-S). Thus, the in-vitro and in-vivo results of the study strongly support the potential application of SLNP-TMZ for TMZ-sensitive and resistant GBM therapy, indicatively through inflammatory mechanisms, and thus merit further detailed insights.
Collapse
|
10
|
Windolf H, Chamberlain R, Breitkreutz J, Quodbach J. 3D Printed Mini-Floating-Polypill for Parkinson's Disease: Combination of Levodopa, Benserazide, and Pramipexole in Various Dosing for Personalized Therapy. Pharmaceutics 2022; 14:931. [PMID: 35631518 PMCID: PMC9145509 DOI: 10.3390/pharmaceutics14050931] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023] Open
Abstract
Therapy for Parkinson’s disease is quite challenging. Numerous drugs are available for symptomatic treatment, and levodopa (LD), in combination with a dopa decarboxylase inhibitor (e.g., benserazide (BZ)), has been the drug of choice for years. As the disease progresses, therapy must be supplemented with a dopamine agonist (e.g., pramipexole (PDM)). Side effects increase, as do the required dose and dosing intervals. For these specific requirements of drug therapy, the 3D printing method fused deposition modelling (FDM) was applied in this study for personalized therapy. Hot melt extrusion was utilized to produce two different compositions into filaments: PDM and polyvinyl alcohol for rapid drug release and a fixed combination of LD/BZ (4:1) in an ethylene-vinyl acetate copolymer matrix for prolonged drug release. Since LD is absorbed in the upper gastrointestinal tract, a formulation that floats in gastric fluid was desired to prolong API absorption. Using the FDM 3D printing process, different polypill geometries were printed from both filaments, with variable dosages. Dosage forms with 15−180 mg LD could be printed, showing similar release rates (f2 > 50). In addition, a mini drug delivery dosage form was printed that released 75% LD/BZ within 750 min and could be used as a gastric retentive drug delivery system due to the floating properties of the composition. The floating mini-polypill was designed to accommodate patients’ swallowing difficulties and to allow for individualized dosing with an API release over a longer period of time.
Collapse
Affiliation(s)
- Hellen Windolf
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; (H.W.); (R.C.); (J.B.)
| | - Rebecca Chamberlain
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; (H.W.); (R.C.); (J.B.)
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; (H.W.); (R.C.); (J.B.)
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; (H.W.); (R.C.); (J.B.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
11
|
Ahmad J, Haider N, Khan MA, Md S, Alhakamy NA, Ghoneim MM, Alshehri S, Sarim Imam S, Ahmad MZ, Mishra A. Novel therapeutic interventions for combating Parkinson's disease and prospects of Nose-to-Brain drug delivery. Biochem Pharmacol 2021; 195:114849. [PMID: 34808125 DOI: 10.1016/j.bcp.2021.114849] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disorder prevalent mainly in geriatric population. While, L-DOPA remains one of the major choices for the therapeutic management of PD, various motor and non-motor manifestations complicate the management of PD. In the last two decades, exhaustive research has been carried out to explore novel therapeutic approaches for mitigating motor and non-motor symptoms of PD. These approaches majorly include receptor-based, anti-inflammatory, stem-cell and nucleic acid based. The major limitations of existing therapeutic interventions (of commonly oral route) are low efficacy due to low brain bioavailability and associated side effects. Nanotechnology has been exploited and has gained wide attention in the recent years as an approach for enhancement of bioavailability of various small molecule drugs in the brain. To address the challenges associated with PD therapy, nose-to-brain delivery utilizing nanomedicine-based approaches has been found to be encouraging in published evidence. Therefore, the present work summarises the major challenges and limitations with antiparkinsonian drugs, novel therapeutic interventions, and scope of nanomedicine-based nose-to-brain delivery in addressing the current challenges of antiparkinsonian therapy. The manuscript tries to sensitize the researchers for designing brain-targeted nanomedicine loaded with natural/synthetic scaffolds, biosimilars, and nucleic acids that can bypass the first-pass effect for the effective management of PD.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia.
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia.
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia.
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia.
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup Assam-781101, India.
| |
Collapse
|