1
|
Shafi S, Sidiq S, Chat OA, Kumar G, Dar AA, Bhat PA. Surfactant-rescued gelation: Stabilizing P123-chitosan hydrogels in blood-isotonic aqueous solutions for controlled drug delivery. Int J Biol Macromol 2025; 310:143166. [PMID: 40246120 DOI: 10.1016/j.ijbiomac.2025.143166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/25/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
The loss of gelation in Chitosan-Pluronic composite hydrogels under physiological saline conditions restricts their potential for drug delivery applications. To this effect, we present a dynamic and composite hydrogel system based on Pluronic P123 and chitosan, which restores gelation upon the addition of sodium dodecyl sulfate (SDS), even in the presence of NaCl at blood-isotonic concentrations. The entry of SDS induces electrostatic interactions and hydrophobic associations, enabling robust gel formation under physiological conditions. The gelation behavior can be desirably modified by varying chitosan concentration and temperature, allowing tunable mechanical properties suitable for drug delivery applications. Rheological analysis confirmed enhanced mechanical stability in saline environments, while FTIR spectroscopy elucidated molecular interactions within the hydrogel. Quinine sulfate release studies showed sustained drug release without burst effects. Kinetic modeling indicated a predominantly non-Fickian transport mechanism, governed by both diffusion and polymer relaxation. This surfactant-rescued gelation strategy stabilizes chitosan-based hydrogels in physiological conditions, making them promising candidates for controlled drug delivery.
Collapse
Affiliation(s)
- Soliyah Shafi
- Department of Chemistry, Bhagwant University, Ajmer, Rajasthan, India; Department of Chemistry, Government Degree College for Women, Pulwama, J&K 192301, India
| | - Saima Sidiq
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar, J&K 190006, India
| | - Oyais Ahmad Chat
- Department of Chemistry, Government Degree College for Women, Pulwama, J&K 192301, India.
| | - Gajendra Kumar
- Department of Chemistry, Bhagwant University, Ajmer, Rajasthan, India; Department of Chemistry, Constituent Govt. College (MJP. Rohilkhand University Bareilly), Hasanpur, UP 244241, India
| | - Aijaz Ahmad Dar
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar, J&K 190006, India
| | - Parvaiz Ahmad Bhat
- Department of Chemistry, Government College for Women, MA Road, Srinagar, J&K 190001, India.
| |
Collapse
|
2
|
Nguyen VT, Dang TLH, Vu MT, Le TP, Nguyen TL, Nguyen TH, Tran NQ. Polyethylene glycol hexadecyl ether modified heparin for paclitaxel nano-delivery system. Biomed Mater 2025; 20:035004. [PMID: 40009981 DOI: 10.1088/1748-605x/adbaa1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
A paclitaxel (PTX) nano-delivery system using modified heparin and polyethylene glycol hexadecyl ether (Brij 58) was developed in this study. Brij 58 was conjugated to the heparin backbone via the cystamine bridge, denoted as Hep-Brij 58, to facilitate self-assembly into stable nanoparticles in an aqueous environment. The self-assembled formation of Hep-Brij nanoparticles was demonstrated through dynamic light scattering and TEM, while the iodine method identified the critical concentration for the self-assembled process. PTX was incorporated into Hep-Brij nanoparticles through physical entrapment. The PTX-loaded Hep-Brij nanoparticles were then characterized according to particle size and size distribution, drug-loading content, and efficiency. Compared to Brij 58, Hep-Brij 58 was more effective in terms of the amount of PTX loaded. Hep-Brij 58/PTX was stable over two weeks of storage in distilled water.In vitrorelease of PTX from Hep-Brij 58 exhibited a controlled drug release effect following the diffusion kinetics. Furthermore, Hep-Brij 58 was non-toxic to primary healthy cells and cancer cells. Thein vitroanticancer test with Hela cells indicated remarkable anticancer activity of PTX-loaded Hep-Brij 58 nanoparticles compared to free PTX. In summary, Hep-Brij 58 nanoparticles hold considerable potential for use as a delivery system for managing PTX therapy.
Collapse
Affiliation(s)
- Van Toan Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 70000, Vietnam
- Faculty of Natural Science, Duy Tan University, Da Nang City 50000, Vietnam
| | - Thi Le Hang Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Minh-Thanh Vu
- Institute of Chemistry and Materials, 17 Hoang Sam, Nghia Do, Cau Giay, Ha Noi 100000, Vietnam
| | - Thi Phuong Le
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Thi Loan Nguyen
- Faculty of Medicine and Pharmacy, Thanh Dong University, Hai Duong City, Hai Duong Province 171967, Vietnam
| | - Thi Huong Nguyen
- Institute of Chemistry and Materials, 17 Hoang Sam, Nghia Do, Cau Giay, Ha Noi 100000, Vietnam
| | - Ngoc Quyen Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
3
|
Di Spirito NA, Grizzuti N, Pasquino R. Self-assembly of Pluronics: A critical review and relevant applications. PHYSICS OF FLUIDS 2024; 36. [DOI: 10.1063/5.0238690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Pluronics, alias poloxamers, are synthetic amphiphilic copolymers owning a triblock structure with a central hydrophobic poly(propylene oxide) (PPO) segment linked to two lateral hydrophilic poly(ethylene oxide) (PEO) chains. Commercially, Pluronics exist in numerous types according to the length of PPO and PEO chains, exhibiting different behavior and phase diagrams in solution. Concentrated aqueous solutions of Pluronics form thermoreversible gel-like systems. Properties, such as versatility, biocompatibility, nontoxicity, thermosensitivity and self-assembling behavior, make them extremely attractive for numerous applications. This review paper provides an overview on Pluronics, with a focus on their properties and phase behaviors, and on the effect of the presence of salts and additives. Different strategies to endow Pluronics with improved and extra properties, such as their chemical modification and mixed micelles, are briefly illustrated. Furthermore, a synopsis of useful experimental methodologies for understanding the flow properties of Pluronic-based systems is presented, providing a practical guide to their experimental characterization. Eventually, significant advances of Pluronic-based materials are briefly reviewed to elucidate their role in diverse applications, ranging from drug delivery and tissue engineering to bioprinting, cell cultures, personal care industry, conductive hydrogels, and electrocatalytic science. The current article is a critical review of Pluronic block copolymers, not intended as just inert materials but also as systems with functional properties able to revolutionize the paradigm of many technological fields.
Collapse
Affiliation(s)
| | - Nino Grizzuti
- DICMaPI, Università degli Studi di Napoli Federico II , P. le Tecchio 80, 80125 Napoli,
| | - Rossana Pasquino
- DICMaPI, Università degli Studi di Napoli Federico II , P. le Tecchio 80, 80125 Napoli,
| |
Collapse
|
4
|
Kumar V, Poonia N, Kumar P, Kumar Verma P, Alshammari A, Albekairi NA, Kabra A, Yadav N. Amphiphilic, lauric acid-coupled pluronic-based nano-micellar system for efficient glipizide delivery. Saudi Pharm J 2024; 32:102046. [PMID: 38577487 PMCID: PMC10992704 DOI: 10.1016/j.jsps.2024.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Glipizide; an insulin secretagogue belonging to the sulfonylurea class, is a widely used antidiabetic drug for managing type 2 diabetes. However, the need for life-long administration and repeated doses poses challenges in maintaining optimal blood glucose levels. In this regard, orally active sustained-release nano-formulations can be a better alternative to traditional antidiabetic formulations. The present study explored an innovative approach by formulating orally active sustained-release nano-micelles using the amphiphilic lauric acid-conjugated-F127 (LAF127) block copolymer. LAF127 block copolymer was synthesized through esterification and thoroughly characterized before being employed to develop glipizide-loaded nano-micelles (GNM) via the thin-film hydration technique. The optimized formulation exhibited mean particle size of 341.40 ± 3.21 nm and depicted homogeneous particle size distribution with a polydispersity index (PDI) < 0.2. The formulation revealed a surface charge of -17.11 ± 6.23 mV. The in vitro release studies of glipizide from developed formulation depicted a sustained release profile. Drug loaded micelles exhibited a substantial reduction in blood glucose levels in diabetic rats for a duration of up to 24 h. Notably, neither the blank nano-micelles of LAF127 nor the drug loaded micelles manifested any indications of toxicity in healthy rats. This study provides an insight on suitability of synthesized LAF127 block copolymer for development of effective oral drug delivery systems for anti-diabetic activity without any significant adverse effects.
Collapse
Affiliation(s)
- Vipan Kumar
- Department of Pharmaceutical Chemistry, JCDM College of Pharmacy, Sirsa 125055, India
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelam Poonia
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Neera Yadav
- School of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Nguyen DT, Nguyen TP, Dinh VT, Nguyen NH, Nguyen KTH, Nguyen TH, Ngan TT, Nhi TTY, Le BHT, Le Thi P, Dang LH, Tran NQ. Potential from synergistic effect of quercetin and paclitaxel co-encapsulated in the targeted folic-gelatin-pluronic P123 nanogels for chemotherapy. Int J Biol Macromol 2023:125248. [PMID: 37307971 DOI: 10.1016/j.ijbiomac.2023.125248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
Dual-drug delivery systems for anticancer therapy have recently attracted substantial attention due to their potency to overcome limitations of conventional anti-cancer drugs, tackle drug resistance problems, as well as improve the therapeutic efficacy. In this study, we introduced a novel nanogel based on folic acid-gelatin-pluronic P123 (FA-GP-P123) conjugate to simultaneously deliver quercetin (QU) and paclitaxel (PTX) to the targeted tumor. The results indicated that the drug loading capacity of FA-GP-P123 nanogels was significantly higher than that of P123 micelles. The kinetic release profiles of QU and PTX from the nanocarriers were governed by Fickian diffusion and swelling behavior, respectively. Notably, FA-GP-P123/QU/PTX dual-drug delivery system induced higher toxicity to MCF-7 and Hela cancer cells than either QU or PTX individual delivery system, and the non-targeted dug delivery system (GP-P123/QU/PTX), indicating the synergistic combination of dual drugs and FA positive targeting effect. Furthermore, FA-GP-P123 could effectively deliver QU and PTX to tumors in vivo after administration into MCF-7 tumor-bearing mice, which resulted in 94.20 ± 5.90 % of tumor volume reduced at day 14. Moreover, the side effects of the dual-drug delivery system were significantly reduced. Overall, we suggest FA-GP-P123 as potential nanocarrier for dual-drug delivery for targeted chemotherapy.
Collapse
Affiliation(s)
- Dinh Trung Nguyen
- Graduate University of Science and Technology, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam; Institute of Applied Materials Science, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam
| | - Thi Phuong Nguyen
- Faculty of Chemical Technology, HCMC University of Food Industry, Ho Chi Minh City 700000, Viet Nam
| | - Van Thoai Dinh
- Graduate University of Science and Technology, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam
| | - Ngoc Hao Nguyen
- Institute of Applied Materials Science, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam
| | - Kim Thi Hoang Nguyen
- Institute of Applied Materials Science, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam
| | - Thi Hiep Nguyen
- Vietnam Department of Tissue Engineering and Regenerative Medicine, School of Biomedical Engineering, International University, Vietnam National University, Ho Chi Minh City (VNU-HCM) 700000, Viet Nam
| | - Tang Tuan Ngan
- Vietnam Department of Tissue Engineering and Regenerative Medicine, School of Biomedical Engineering, International University, Vietnam National University, Ho Chi Minh City (VNU-HCM) 700000, Viet Nam
| | - Tran Thi Yen Nhi
- Institute of Technology Application and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Bao Ha Tran Le
- University of Science - Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Phuong Le Thi
- Graduate University of Science and Technology, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam; Institute of Applied Materials Science, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam.
| | - Le Hang Dang
- Graduate University of Science and Technology, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam; Institute of Applied Materials Science, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam.
| | - Ngoc Quyen Tran
- Graduate University of Science and Technology, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam; Institute of Applied Materials Science, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam.
| |
Collapse
|
6
|
Nguyen VT, Doan P, Nguyen DT, Doan VD, Dao TP, Plavskii V, Nguyen BT, Tran NQ. Effect of targeting ligand designation of self-assembly chitosan-poloxamer nanogels loaded Paclitacel on inhibiting MCF-7 cancer cell growth. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:426-442. [PMID: 34641768 DOI: 10.1080/09205063.2021.1992587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this study, we investigated two formulations of chitosan-Pluronic P123 with different folate ligand designation for targeted delivery of Paclitaxel (PTX), in which folic acid (FA) was directly conjugated to chitosan (FA-Cs-P123) or substituted onto P123 (Cs-P123-FA). The results showed that the FA content of Cs-P123-FA was determined at 0.71 wt/wt% which was significantly higher than that of FA-Cs-P123 (0.31 wt/wt%). Two copolymers were low critical gel concentrations (CGC). FA-Cs-P123 and Cs-P123-FA nanogels performed high PTX encapsulation efficiency reaching 95.57 ± 5.51 and 92.51 ± 6.68 wt/wt%, respectively. Transmission electron microscopy (TEM) and zeta potential analysis indicated that the PTX-loaded nanogels were spherically formed around 60 nm in diameter along with positive charge. Furthermore, the PTX release profile was slow and it was controlled by the pH of the medium. In particular, in vitro biocompatibility assays indicated that both FA-Cs-P123 and Cs-P123-FA exhibited good biological compatibility with a human foreskin fibroblast cell line and well uptake efficiency into MCF-7 cancer cells. Cs-P123-FA nanogel significantly enhanced the cytotoxicity of PTX in comparison with FA-Cs-P123. The result indicates that Cs-P123-FA nanogels with a higher decorated FA content perform a better targeting efficiency; therefore, they could have great potential application towards breast cancer treatment.
Collapse
Affiliation(s)
- Van Toan Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam.,Faculty of Natural Science, Duy Tan University, Da Nang city, Vietnam.,Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Ho Chi Minh City, Vietnam
| | - Phuong Doan
- Institute of Applied Materials Science Vietnam Academy of Science and Technology, HCMC, Vietnam
| | - Dinh Trung Nguyen
- Institute of Applied Materials Science Vietnam Academy of Science and Technology, HCMC, Vietnam
| | - Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Tan Phat Dao
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Vitalii Plavskii
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Bich Tram Nguyen
- Department of Natural Science, Thu Dau Mot University, Thu Dau Mot City, Vietnam
| | - Ngoc Quyen Tran
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Ho Chi Minh City, Vietnam.,Institute of Applied Materials Science Vietnam Academy of Science and Technology, HCMC, Vietnam
| |
Collapse
|